|
import gradio as gr |
|
import numpy as np |
|
import random |
|
|
|
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image |
|
|
|
import torch |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
from eSeNTranslate import TranslateFromAny2XModel |
|
|
|
|
|
fasttextModelPath = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") |
|
translatePipe = TranslateFromAny2XModel(nllb_model_path="facebook/nllb-200-distilled-600M", fasttext_model_path=fasttextModelPath) |
|
|
|
modelPath = "stabilityai/sdxl-turbo" |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
torch.cuda.max_memory_allocated(device=device) |
|
|
|
pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16") |
|
pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16") |
|
|
|
pipeTex2Image.enable_xformers_memory_efficient_attention() |
|
pipeImage2Image.enable_xformers_memory_efficient_attention() |
|
|
|
else: |
|
device = "cpu" |
|
|
|
pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, use_safetensors=True) |
|
pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, use_safetensors=True) |
|
|
|
|
|
|
|
pipeTex2Image.to(device) |
|
pipeImage2Image.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, image): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
prompt = translatePipe.generate(prompt) |
|
|
|
if use_as_input: |
|
print("Image to Image:") |
|
pipe = pipeImage2Image |
|
init_image = Image.fromarray(np.uint8(image)).resize((width, height)).convert("RGB") |
|
init_image.save("input.png", format="PNG") |
|
print(type(init_image), init_image.size) |
|
image = pipe( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
guidance_scale = guidance_scale, |
|
num_inference_steps = num_inference_steps, |
|
width = width, |
|
height = height, |
|
generator = generator, |
|
strength=strength, |
|
image=init_image |
|
).images[0] |
|
else: |
|
print("Text to Image:") |
|
pipe = pipeTex2Image |
|
image = pipe( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
guidance_scale = guidance_scale, |
|
num_inference_steps = num_inference_steps, |
|
width = width, |
|
height = height, |
|
generator = generator |
|
).images[0] |
|
|
|
return image |
|
|
|
examples = [ |
|
"Face of a modern woman of Balkan descent 25 years old", |
|
"Blue car sandero stepway on dirt road", |
|
"Cow in the skin of a dog of dalmatian breed", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: auto; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as app: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# Text-to-Image, Image-to-Image by Slavko Novak |
|
Currently running on {device}. |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Generate", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
use_as_input = gr.Checkbox(label="Use image as input", value=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=0.0, |
|
) |
|
|
|
strength = gr.Slider( |
|
label="Strength scale", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=12, |
|
step=1, |
|
value=2, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
inputs = [prompt] |
|
) |
|
|
|
run_button.click( |
|
fn = infer, |
|
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, result], |
|
outputs = [result] |
|
) |
|
|
|
|
|
app.queue().launch() |
|
|