Slavko Novak
Translation any to english
9827f59
import gradio as gr
import numpy as np
import random
#from diffusers import DiffusionPipeline
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
#from diffusers.utils import load_image
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from eSeNTranslate import TranslateFromAny2XModel
# Load translation model(s) (Pipeline)
fasttextModelPath = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
translatePipe = TranslateFromAny2XModel(nllb_model_path="facebook/nllb-200-distilled-600M", fasttext_model_path=fasttextModelPath)
modelPath = "stabilityai/sdxl-turbo"
if torch.cuda.is_available():
device = "cuda"
torch.cuda.max_memory_allocated(device=device)
#pipe = DiffusionPipeline.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16")
pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16")
#pipe.enable_xformers_memory_efficient_attention()
pipeTex2Image.enable_xformers_memory_efficient_attention()
pipeImage2Image.enable_xformers_memory_efficient_attention()
#pipe = pipe.to(device)
else:
device = "cpu"
#pipe = DiffusionPipeline.from_pretrained(modelPath, use_safetensors=True)
pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, use_safetensors=True)
pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, use_safetensors=True)
#pipe = pipe.to(device)
#pipe = pipe.to(device)
pipeTex2Image.to(device)
pipeImage2Image.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, image):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
prompt = translatePipe.generate(prompt)
if use_as_input:
print("Image to Image:")
pipe = pipeImage2Image
init_image = Image.fromarray(np.uint8(image)).resize((width, height)).convert("RGB")
init_image.save("input.png", format="PNG")
print(type(init_image), init_image.size)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator,
strength=strength,
image=init_image
).images[0]
else:
print("Text to Image:")
pipe = pipeTex2Image
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Face of a modern woman of Balkan descent 25 years old",
"Blue car sandero stepway on dirt road",
"Cow in the skin of a dog of dalmatian breed",
]
css="""
#col-container {
margin: 0 auto;
max-width: auto;
}
"""
with gr.Blocks(css=css) as app:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image, Image-to-Image by Slavko Novak
Currently running on {device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0)
result = gr.Image(label="Result", show_label=False)
use_as_input = gr.Checkbox(label="Use image as input", value=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
strength = gr.Slider(
label="Strength scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, result],
outputs = [result]
)
#app.queue().launch(server_name="0.0.0.0", server_port=8080, share=True)
app.queue().launch()