File size: 6,428 Bytes
dbc5b70
 
 
 
 
 
 
 
9827f59
 
dbc5b70
9827f59
 
 
dbc5b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9827f59
dbc5b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import numpy as np
import random
#from diffusers import DiffusionPipeline
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
#from diffusers.utils import load_image
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from eSeNTranslate import TranslateFromAny2XModel

# Load translation model(s) (Pipeline)
fasttextModelPath = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
translatePipe = TranslateFromAny2XModel(nllb_model_path="facebook/nllb-200-distilled-600M", fasttext_model_path=fasttextModelPath)

modelPath = "stabilityai/sdxl-turbo"
 
if torch.cuda.is_available():
    device = "cuda"
    torch.cuda.max_memory_allocated(device=device)
    #pipe = DiffusionPipeline.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16")
    pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16")
    #pipe.enable_xformers_memory_efficient_attention()
    pipeTex2Image.enable_xformers_memory_efficient_attention() 
    pipeImage2Image.enable_xformers_memory_efficient_attention()
    #pipe = pipe.to(device)
else:
    device = "cpu"
    #pipe = DiffusionPipeline.from_pretrained(modelPath, use_safetensors=True)
    pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, use_safetensors=True)
    pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, use_safetensors=True)
    #pipe = pipe.to(device)

#pipe = pipe.to(device)    
pipeTex2Image.to(device)
pipeImage2Image.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, image):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    prompt = translatePipe.generate(prompt)
    
    if use_as_input:
        print("Image to Image:")
        pipe = pipeImage2Image
        init_image = Image.fromarray(np.uint8(image)).resize((width, height)).convert("RGB")
        init_image.save("input.png", format="PNG")
        print(type(init_image), init_image.size)
        image = pipe(
            prompt = prompt, 
            negative_prompt = negative_prompt,
            guidance_scale = guidance_scale, 
            num_inference_steps = num_inference_steps, 
            width = width, 
            height = height,
            generator = generator,
            strength=strength,
            image=init_image
        ).images[0] 
    else:
        print("Text to Image:")
        pipe = pipeTex2Image
        image = pipe(
            prompt = prompt, 
            negative_prompt = negative_prompt,
            guidance_scale = guidance_scale, 
            num_inference_steps = num_inference_steps, 
            width = width, 
            height = height,
            generator = generator
        ).images[0] 
    
    return image

examples = [
    "Face  of a modern woman of Balkan descent 25 years old",
    "Blue car sandero stepway on dirt road",
    "Cow in the skin of a dog of dalmatian breed",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: auto;
}
"""


with gr.Blocks(css=css) as app:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image, Image-to-Image by Slavko Novak
        Currently running on {device}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Generate", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        use_as_input = gr.Checkbox(label="Use image as input", value=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                strength = gr.Slider(
                    label="Strength scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=0.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, result],
        outputs = [result]
    )

#app.queue().launch(server_name="0.0.0.0", server_port=8080, share=True)
app.queue().launch()