import gradio as gr import numpy as np import random #from diffusers import DiffusionPipeline from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image #from diffusers.utils import load_image import torch from PIL import Image from huggingface_hub import hf_hub_download from eSeNTranslate import TranslateFromAny2XModel # Load translation model(s) (Pipeline) fasttextModelPath = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") translatePipe = TranslateFromAny2XModel(nllb_model_path="facebook/nllb-200-distilled-600M", fasttext_model_path=fasttextModelPath) modelPath = "stabilityai/sdxl-turbo" if torch.cuda.is_available(): device = "cuda" torch.cuda.max_memory_allocated(device=device) #pipe = DiffusionPipeline.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16") pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16") #pipe.enable_xformers_memory_efficient_attention() pipeTex2Image.enable_xformers_memory_efficient_attention() pipeImage2Image.enable_xformers_memory_efficient_attention() #pipe = pipe.to(device) else: device = "cpu" #pipe = DiffusionPipeline.from_pretrained(modelPath, use_safetensors=True) pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, use_safetensors=True) pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, use_safetensors=True) #pipe = pipe.to(device) #pipe = pipe.to(device) pipeTex2Image.to(device) pipeImage2Image.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, image): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) prompt = translatePipe.generate(prompt) if use_as_input: print("Image to Image:") pipe = pipeImage2Image init_image = Image.fromarray(np.uint8(image)).resize((width, height)).convert("RGB") init_image.save("input.png", format="PNG") print(type(init_image), init_image.size) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator, strength=strength, image=init_image ).images[0] else: print("Text to Image:") pipe = pipeTex2Image image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image examples = [ "Face of a modern woman of Balkan descent 25 years old", "Blue car sandero stepway on dirt road", "Cow in the skin of a dog of dalmatian breed", ] css=""" #col-container { margin: 0 auto; max-width: auto; } """ with gr.Blocks(css=css) as app: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image, Image-to-Image by Slavko Novak Currently running on {device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Generate", scale=0) result = gr.Image(label="Result", show_label=False) use_as_input = gr.Checkbox(label="Use image as input", value=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) strength = gr.Slider( label="Strength scale", minimum=0.0, maximum=1.0, step=0.1, value=0.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, result], outputs = [result] ) #app.queue().launch(server_name="0.0.0.0", server_port=8080, share=True) app.queue().launch()