Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch OpenAI GPT-2 model.""" | |
import math | |
import os | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from packaging import version | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.models.gpt2.modeling_gpt2 import load_tf_weights_in_gpt2, GPT2LMHeadModel, GPT2MLP, GPT2Attention, GPT2Block, GPT2Model | |
from transformers.models.xglm.modeling_xglm import XGLMForCausalLM, XGLMAttention, XGLMDecoderLayer, XGLMModel | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel, SequenceSummary | |
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer | |
from transformers.utils import ( | |
ModelOutput, | |
logging, | |
) | |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
from transformers.models.xglm.configuration_xglm import XGLMConfig | |
if version.parse(torch.__version__) >= version.parse("1.6"): | |
is_amp_available = True | |
from torch.cuda.amp import autocast | |
else: | |
is_amp_available = False | |
class ThisXGLMConfig(XGLMConfig): | |
model_type = "this_xglm" | |
def __init__( | |
self, | |
cross_attention_reduce_factor = 1, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.cross_attention_reduce_factor = cross_attention_reduce_factor | |
class ThisXGLMAttention(XGLMAttention): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
dropout= 0.0, | |
is_decoder= False, | |
bias= True, | |
config=None, | |
is_cross_attention=False, | |
): | |
super().__init__(embed_dim,num_heads, dropout,is_decoder,bias) | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.cross_attention_reduce_factor = config.cross_attention_reduce_factor | |
self.head_dim = int(self.head_dim / self.cross_attention_reduce_factor) | |
if is_cross_attention: | |
#print("self", int(embed_dim / self.cross_attention_reduce_factor)) | |
self.k_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias) | |
#print("self.k_proj",self.k_proj) | |
self.v_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias) | |
self.q_proj = nn.Linear(embed_dim, int(embed_dim / self.cross_attention_reduce_factor), bias=bias) | |
self.out_proj = nn.Linear(int(embed_dim / self.cross_attention_reduce_factor),embed_dim, bias=bias) | |
self.embed_dim=int(embed_dim / self.cross_attention_reduce_factor) | |
else: | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim , bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
past_key_value, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
): | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
#print("key_value_states",key_value_states.size()) | |
#print("self.k_proj(key_value_states)",self.k_proj(key_value_states).size()) | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 | |
if attn_weights.dtype == torch.float16: | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) | |
else: | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
#print("boraaa self.head_dim",self.head_dim) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
#print("attn_output bef",attn_output.size()) | |
attn_output = attn_output.transpose(1, 2) | |
#print("attn_output",attn_output.size()) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned aross GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
#print("attn_output",attn_output.size()) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class ThisXGLMDecoderLayer(XGLMDecoderLayer): | |
def __init__(self, config): | |
super().__init__(config) | |
if config.add_cross_attention: | |
print("add cross") | |
self.encoder_attn = ThisXGLMAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
config=config, | |
is_cross_attention=True | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
class ThisXGLMModel(XGLMModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.layers = nn.ModuleList([ThisXGLMDecoderLayer(config) for _ in range(config.num_layers)]) | |
class ThisXGLMForCausalLM(XGLMForCausalLM): | |
config_class = ThisXGLMConfig | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = ThisXGLMModel(config) | |