Spaces:
Sleeping
Sleeping
RitaParadaRamos
commited on
Commit
•
7c4b306
1
Parent(s):
c881ec3
Upload 11 files
Browse files- extract_features.py +54 -0
- gpt2.py +167 -0
- gptj.py +0 -0
- opt.py +696 -0
- retrieve_caps.py +145 -0
- retrieve_caps2.py +178 -0
- template.txt +5 -0
- utils.py +131 -0
- utils_generate_retrieved_caps.py +135 -0
- vision_encoder_decoder.py +560 -0
- xglm.py +269 -0
extract_features.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import pandas as pd
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from multiprocessing import Pool
|
9 |
+
import h5py
|
10 |
+
from transformers import logging
|
11 |
+
from transformers import CLIPFeatureExtractor, CLIPVisionModel
|
12 |
+
logging.set_verbosity_error()
|
13 |
+
|
14 |
+
data_dir = 'data/images/'
|
15 |
+
features_dir = 'features/'
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
encoder_name = 'openai/clip-vit-base-patch32'
|
20 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(encoder_name)
|
21 |
+
clip_encoder = CLIPVisionModel.from_pretrained(encoder_name).to(device)
|
22 |
+
|
23 |
+
annotations = json.load(open('data/dataset_coco.json'))['images']
|
24 |
+
|
25 |
+
def load_data():
|
26 |
+
data = {'train': [], 'val': []}
|
27 |
+
|
28 |
+
for item in annotations:
|
29 |
+
file_name = item['filename'].split('_')[-1]
|
30 |
+
if item['split'] == 'train' or item['split'] == 'restval':
|
31 |
+
data['train'].append({'file_name': file_name, 'cocoid': item['cocoid']})
|
32 |
+
elif item['split'] == 'val':
|
33 |
+
data['val'].append({'file_name': file_name, 'cocoid': item['cocoid']})
|
34 |
+
return data
|
35 |
+
|
36 |
+
def encode_split(data, split):
|
37 |
+
df = pd.DataFrame(data[split])
|
38 |
+
|
39 |
+
bs = 256
|
40 |
+
h5py_file = h5py.File(features_dir + '{}.hdf5'.format(split), 'w')
|
41 |
+
for idx in tqdm(range(0, len(df), bs)):
|
42 |
+
cocoids = df['cocoid'][idx:idx + bs]
|
43 |
+
file_names = df['file_name'][idx:idx + bs]
|
44 |
+
images = [Image.open(data_dir + file_name).convert("RGB") for file_name in file_names]
|
45 |
+
with torch.no_grad():
|
46 |
+
pixel_values = feature_extractor(images, return_tensors='pt').pixel_values.to(device)
|
47 |
+
encodings = clip_encoder(pixel_values=pixel_values).last_hidden_state.cpu().numpy()
|
48 |
+
for cocoid, encoding in zip(cocoids, encodings):
|
49 |
+
h5py_file.create_dataset(str(cocoid), (50, 768), data=encoding)
|
50 |
+
|
51 |
+
data = load_data()
|
52 |
+
|
53 |
+
encode_split(data, 'train')
|
54 |
+
encode_split(data, 'val')
|
gpt2.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch OpenAI GPT-2 model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from packaging import version
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from transformers.models.gpt2.modeling_gpt2 import load_tf_weights_in_gpt2, GPT2LMHeadModel, GPT2MLP, GPT2Attention, GPT2Block, GPT2Model
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.modeling_outputs import (
|
33 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
39 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
40 |
+
from transformers.utils import (
|
41 |
+
ModelOutput,
|
42 |
+
logging,
|
43 |
+
)
|
44 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
45 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
46 |
+
|
47 |
+
|
48 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
49 |
+
is_amp_available = True
|
50 |
+
from torch.cuda.amp import autocast
|
51 |
+
else:
|
52 |
+
is_amp_available = False
|
53 |
+
|
54 |
+
|
55 |
+
class ThisGPT2Config(GPT2Config):
|
56 |
+
model_type = "this_gpt2"
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
cross_attention_reduce_factor = 1,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
super().__init__(**kwargs)
|
64 |
+
self.cross_attention_reduce_factor = cross_attention_reduce_factor
|
65 |
+
|
66 |
+
class ThisGPT2Attention(GPT2Attention):
|
67 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
68 |
+
super().__init__(config, is_cross_attention, layer_idx)
|
69 |
+
|
70 |
+
#print("this gpt2")
|
71 |
+
|
72 |
+
#print("self.is_cross_attention = is_cross_attention", self.is_cross_attention, is_cross_attention)
|
73 |
+
|
74 |
+
self.cross_attention_reduce_factor = config.cross_attention_reduce_factor
|
75 |
+
|
76 |
+
if self.is_cross_attention:
|
77 |
+
self.c_attn = Conv1D(int(2 / self.cross_attention_reduce_factor * self.embed_dim),
|
78 |
+
self.embed_dim)
|
79 |
+
self.q_attn = Conv1D(int(self.embed_dim / self.cross_attention_reduce_factor), self.embed_dim)
|
80 |
+
self.c_proj = Conv1D(self.embed_dim, int(self.embed_dim / self.cross_attention_reduce_factor))
|
81 |
+
else:
|
82 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
83 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
84 |
+
|
85 |
+
def forward(
|
86 |
+
self,
|
87 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
88 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
89 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
90 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
91 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
92 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
93 |
+
use_cache: Optional[bool] = False,
|
94 |
+
output_attentions: Optional[bool] = False,
|
95 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
96 |
+
if encoder_hidden_states is not None:
|
97 |
+
if not hasattr(self, "q_attn"):
|
98 |
+
raise ValueError(
|
99 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
100 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
101 |
+
)
|
102 |
+
split_size = int(self.split_size / self.cross_attention_reduce_factor)
|
103 |
+
head_dim = int(self.head_dim / self.cross_attention_reduce_factor)
|
104 |
+
|
105 |
+
query = self.q_attn(hidden_states)
|
106 |
+
key, value = self.c_attn(encoder_hidden_states).split(split_size, dim=2)
|
107 |
+
attention_mask = encoder_attention_mask
|
108 |
+
|
109 |
+
query = self._split_heads(query, self.num_heads, head_dim)
|
110 |
+
key = self._split_heads(key, self.num_heads, head_dim)
|
111 |
+
value = self._split_heads(value, self.num_heads, head_dim)
|
112 |
+
else:
|
113 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
114 |
+
|
115 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
116 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
117 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
118 |
+
|
119 |
+
if layer_past is not None:
|
120 |
+
past_key, past_value = layer_past
|
121 |
+
key = torch.cat((past_key, key), dim=-2)
|
122 |
+
value = torch.cat((past_value, value), dim=-2)
|
123 |
+
|
124 |
+
if use_cache is True:
|
125 |
+
present = (key, value)
|
126 |
+
else:
|
127 |
+
present = None
|
128 |
+
|
129 |
+
if self.reorder_and_upcast_attn:
|
130 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
131 |
+
else:
|
132 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
133 |
+
|
134 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, int(self.head_dim / self.cross_attention_reduce_factor))
|
135 |
+
attn_output = self.c_proj(attn_output)
|
136 |
+
attn_output = self.resid_dropout(attn_output)
|
137 |
+
|
138 |
+
outputs = (attn_output, present)
|
139 |
+
if output_attentions:
|
140 |
+
outputs += (attn_weights,)
|
141 |
+
|
142 |
+
return outputs # a, present, (attentions)
|
143 |
+
|
144 |
+
|
145 |
+
class ThisGPT2Block(GPT2Block):
|
146 |
+
def __init__(self, config, layer_idx=None):
|
147 |
+
super().__init__(config, layer_idx)
|
148 |
+
hidden_size = config.hidden_size
|
149 |
+
|
150 |
+
if config.add_cross_attention:
|
151 |
+
self.crossattention = ThisGPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx)
|
152 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
153 |
+
|
154 |
+
class ThisGPT2Model(GPT2Model):
|
155 |
+
|
156 |
+
def __init__(self, config):
|
157 |
+
super().__init__(config)
|
158 |
+
self.h = nn.ModuleList([ThisGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
159 |
+
|
160 |
+
|
161 |
+
class ThisGPT2LMHeadModel(GPT2LMHeadModel):
|
162 |
+
config_class = ThisGPT2Config
|
163 |
+
|
164 |
+
def __init__(self, config):
|
165 |
+
super().__init__(config)
|
166 |
+
self.transformer = ThisGPT2Model(config)
|
167 |
+
|
gptj.py
ADDED
File without changes
|
opt.py
ADDED
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch OpenAI GPT-2 model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
import random
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from packaging import version
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.models.gpt2.modeling_gpt2 import load_tf_weights_in_gpt2, GPT2LMHeadModel, GPT2MLP, GPT2Attention, GPT2Block, GPT2Model
|
31 |
+
|
32 |
+
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTAttention, OPTDecoderLayer, OPTModel, OPTDecoder
|
33 |
+
|
34 |
+
from transformers.activations import ACT2FN
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
37 |
+
CausalLMOutputWithCrossAttentions,
|
38 |
+
SequenceClassifierOutputWithPast,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
+
|
42 |
+
from transformers.modeling_outputs import (
|
43 |
+
BaseModelOutputWithPast,
|
44 |
+
CausalLMOutputWithPast,
|
45 |
+
QuestionAnsweringModelOutput,
|
46 |
+
SequenceClassifierOutputWithPast,
|
47 |
+
)
|
48 |
+
|
49 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
50 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
51 |
+
from transformers.utils import (
|
52 |
+
ModelOutput,
|
53 |
+
logging,
|
54 |
+
)
|
55 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
56 |
+
from transformers.models.opt.configuration_opt import OPTConfig
|
57 |
+
|
58 |
+
|
59 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
60 |
+
is_amp_available = True
|
61 |
+
from torch.cuda.amp import autocast
|
62 |
+
else:
|
63 |
+
is_amp_available = False
|
64 |
+
|
65 |
+
|
66 |
+
class ThisOPTConfig(OPTConfig):
|
67 |
+
model_type = "this_opt"
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
cross_attention_reduce_factor = 1,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.cross_attention_reduce_factor = cross_attention_reduce_factor
|
76 |
+
|
77 |
+
|
78 |
+
class ThisOPTAttention(OPTAttention):
|
79 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
embed_dim,
|
84 |
+
num_heads,
|
85 |
+
dropout = 0.0,
|
86 |
+
is_decoder = False,
|
87 |
+
bias = True,
|
88 |
+
config=None,
|
89 |
+
is_cross_attention=False,
|
90 |
+
):
|
91 |
+
super().__init__(embed_dim,num_heads, dropout,is_decoder,bias)
|
92 |
+
self.embed_dim = embed_dim
|
93 |
+
self.num_heads = num_heads
|
94 |
+
self.dropout = dropout
|
95 |
+
self.head_dim = embed_dim // num_heads
|
96 |
+
|
97 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
98 |
+
raise ValueError(
|
99 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
100 |
+
f" and `num_heads`: {num_heads})."
|
101 |
+
)
|
102 |
+
self.scaling = self.head_dim**-0.5
|
103 |
+
self.is_decoder = is_decoder
|
104 |
+
|
105 |
+
self.cross_attention_reduce_factor = config.cross_attention_reduce_factor
|
106 |
+
self.head_dim = int(self.head_dim / self.cross_attention_reduce_factor)
|
107 |
+
|
108 |
+
|
109 |
+
if is_cross_attention:
|
110 |
+
#print("self", int(embed_dim / self.cross_attention_reduce_factor))
|
111 |
+
self.k_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias)
|
112 |
+
#print("self.k_proj",self.k_proj)
|
113 |
+
self.v_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias)
|
114 |
+
self.q_proj = nn.Linear(embed_dim, int(embed_dim / self.cross_attention_reduce_factor), bias=bias)
|
115 |
+
self.out_proj = nn.Linear(int(embed_dim / self.cross_attention_reduce_factor),embed_dim, bias=bias)
|
116 |
+
|
117 |
+
self.embed_dim=int(embed_dim / self.cross_attention_reduce_factor)
|
118 |
+
else:
|
119 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
120 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim , bias=bias)
|
121 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
122 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
123 |
+
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self,
|
127 |
+
hidden_states,
|
128 |
+
key_value_states = None,
|
129 |
+
past_key_value = None,
|
130 |
+
attention_mask = None,
|
131 |
+
layer_head_mask = None,
|
132 |
+
output_attentions= False,
|
133 |
+
):
|
134 |
+
"""Input shape: Batch x Time x Channel"""
|
135 |
+
|
136 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
137 |
+
# for the decoder
|
138 |
+
is_cross_attention = key_value_states is not None
|
139 |
+
|
140 |
+
bsz, tgt_len, _ = hidden_states.size()
|
141 |
+
|
142 |
+
# get query proj
|
143 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
144 |
+
# get key, value proj
|
145 |
+
if is_cross_attention and past_key_value is not None:
|
146 |
+
# reuse k,v, cross_attentions
|
147 |
+
key_states = past_key_value[0]
|
148 |
+
value_states = past_key_value[1]
|
149 |
+
elif is_cross_attention:
|
150 |
+
# cross_attentions
|
151 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
152 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
153 |
+
elif past_key_value is not None:
|
154 |
+
# reuse k, v, self_attention
|
155 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
156 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
157 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
158 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
159 |
+
else:
|
160 |
+
# self_attention
|
161 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
162 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
163 |
+
|
164 |
+
if self.is_decoder:
|
165 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
166 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
167 |
+
# key/value_states (first "if" case)
|
168 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
169 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
170 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
171 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
172 |
+
past_key_value = (key_states, value_states)
|
173 |
+
|
174 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
175 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
176 |
+
key_states = key_states.view(*proj_shape)
|
177 |
+
value_states = value_states.view(*proj_shape)
|
178 |
+
|
179 |
+
src_len = key_states.size(1)
|
180 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
181 |
+
|
182 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
183 |
+
raise ValueError(
|
184 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
185 |
+
f" {attn_weights.size()}"
|
186 |
+
)
|
187 |
+
|
188 |
+
if attention_mask is not None:
|
189 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
190 |
+
raise ValueError(
|
191 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
192 |
+
)
|
193 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
194 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
195 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
196 |
+
|
197 |
+
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
|
198 |
+
if attn_weights.dtype == torch.float16:
|
199 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
|
200 |
+
else:
|
201 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
202 |
+
|
203 |
+
if layer_head_mask is not None:
|
204 |
+
if layer_head_mask.size() != (self.num_heads,):
|
205 |
+
raise ValueError(
|
206 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
207 |
+
f" {layer_head_mask.size()}"
|
208 |
+
)
|
209 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
210 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
211 |
+
|
212 |
+
if output_attentions:
|
213 |
+
# this operation is a bit awkward, but it's required to
|
214 |
+
# make sure that attn_weights keeps its gradient.
|
215 |
+
# In order to do so, attn_weights have to be reshaped
|
216 |
+
# twice and have to be reused in the following
|
217 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
218 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
219 |
+
else:
|
220 |
+
attn_weights_reshaped = None
|
221 |
+
|
222 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
223 |
+
|
224 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
225 |
+
|
226 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
227 |
+
raise ValueError(
|
228 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
229 |
+
f" {attn_output.size()}"
|
230 |
+
)
|
231 |
+
|
232 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
233 |
+
attn_output = attn_output.transpose(1, 2)
|
234 |
+
|
235 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
236 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
237 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
238 |
+
|
239 |
+
attn_output = self.out_proj(attn_output)
|
240 |
+
|
241 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
242 |
+
|
243 |
+
|
244 |
+
class ThisOPTDecoderLayer(OPTDecoderLayer):
|
245 |
+
def __init__(self, config):
|
246 |
+
super().__init__(config)
|
247 |
+
|
248 |
+
if config.add_cross_attention:
|
249 |
+
self.encoder_attn = ThisOPTAttention(
|
250 |
+
embed_dim=self.embed_dim,
|
251 |
+
num_heads=config.num_attention_heads,
|
252 |
+
dropout=config.attention_dropout,
|
253 |
+
is_decoder=True,
|
254 |
+
#bias=config.enable_bias,
|
255 |
+
config=config,
|
256 |
+
is_cross_attention=True
|
257 |
+
)
|
258 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim,elementwise_affine=config.layer_norm_elementwise_affine)
|
259 |
+
|
260 |
+
|
261 |
+
def forward(
|
262 |
+
self,
|
263 |
+
hidden_states,
|
264 |
+
attention_mask= None,
|
265 |
+
encoder_hidden_states = None,
|
266 |
+
encoder_attention_mask = None,
|
267 |
+
layer_head_mask = None,
|
268 |
+
cross_attn_head_mask = None,
|
269 |
+
output_attentions = False,
|
270 |
+
use_cache = False,
|
271 |
+
past_key_value = None,
|
272 |
+
):
|
273 |
+
"""
|
274 |
+
Args:
|
275 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
276 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
277 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
278 |
+
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
|
279 |
+
`(encoder_attention_heads,)`.
|
280 |
+
output_attentions (`bool`, *optional*):
|
281 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
282 |
+
returned tensors for more detail.
|
283 |
+
use_cache (`bool`, *optional*):
|
284 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
285 |
+
(see `past_key_values`).
|
286 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
287 |
+
"""
|
288 |
+
|
289 |
+
residual = hidden_states
|
290 |
+
|
291 |
+
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
292 |
+
if self.do_layer_norm_before:
|
293 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
294 |
+
|
295 |
+
# Self Attention
|
296 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
297 |
+
hidden_states=hidden_states,
|
298 |
+
past_key_value=past_key_value,
|
299 |
+
attention_mask=attention_mask,
|
300 |
+
layer_head_mask=layer_head_mask,
|
301 |
+
output_attentions=output_attentions,
|
302 |
+
)
|
303 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
304 |
+
hidden_states = residual + hidden_states
|
305 |
+
|
306 |
+
|
307 |
+
# Cross-Attention Block
|
308 |
+
cross_attn_present_key_value = None
|
309 |
+
cross_attn_weights = None
|
310 |
+
if encoder_hidden_states is not None:
|
311 |
+
residual = hidden_states
|
312 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
313 |
+
|
314 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
315 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
316 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
317 |
+
hidden_states=hidden_states,
|
318 |
+
key_value_states=encoder_hidden_states,
|
319 |
+
attention_mask=encoder_attention_mask,
|
320 |
+
layer_head_mask=cross_attn_head_mask,
|
321 |
+
past_key_value=cross_attn_past_key_value,
|
322 |
+
output_attentions=output_attentions,
|
323 |
+
)
|
324 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
325 |
+
hidden_states = residual + hidden_states
|
326 |
+
|
327 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
328 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
# 350m applies layer norm AFTER attention
|
333 |
+
if not self.do_layer_norm_before:
|
334 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
335 |
+
|
336 |
+
# Fully Connected
|
337 |
+
hidden_states_shape = hidden_states.shape
|
338 |
+
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
|
339 |
+
residual = hidden_states
|
340 |
+
|
341 |
+
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
342 |
+
if self.do_layer_norm_before:
|
343 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
344 |
+
|
345 |
+
hidden_states = self.fc1(hidden_states)
|
346 |
+
hidden_states = self.activation_fn(hidden_states)
|
347 |
+
|
348 |
+
hidden_states = self.fc2(hidden_states)
|
349 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
350 |
+
|
351 |
+
hidden_states = (residual + hidden_states).view(hidden_states_shape)
|
352 |
+
|
353 |
+
# 350m applies layer norm AFTER attention
|
354 |
+
if not self.do_layer_norm_before:
|
355 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
356 |
+
|
357 |
+
outputs = (hidden_states,)
|
358 |
+
|
359 |
+
if output_attentions:
|
360 |
+
outputs += (self_attn_weights,)
|
361 |
+
|
362 |
+
if use_cache:
|
363 |
+
outputs += (present_key_value,)
|
364 |
+
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
class ThisOPTDecoder(OPTDecoder):
|
368 |
+
def __init__(self, config):
|
369 |
+
super().__init__(config)
|
370 |
+
self.layers = nn.ModuleList([ThisOPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
371 |
+
|
372 |
+
|
373 |
+
def forward(
|
374 |
+
self,
|
375 |
+
input_ids = None,
|
376 |
+
attention_mask = None,
|
377 |
+
encoder_hidden_states=None,
|
378 |
+
encoder_attention_mask = None,
|
379 |
+
head_mask = None,
|
380 |
+
cross_attn_head_mask = None,
|
381 |
+
past_key_values = None,
|
382 |
+
inputs_embeds = None,
|
383 |
+
use_cache = None,
|
384 |
+
output_attentions = None,
|
385 |
+
output_hidden_states = None,
|
386 |
+
return_dict = None,
|
387 |
+
):
|
388 |
+
r"""
|
389 |
+
Args:
|
390 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
391 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
392 |
+
provide it.
|
393 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
394 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
395 |
+
[What are input IDs?](../glossary#input-ids)
|
396 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
397 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
398 |
+
- 1 for tokens that are **not masked**,
|
399 |
+
- 0 for tokens that are **masked**.
|
400 |
+
[What are attention masks?](../glossary#attention-mask)
|
401 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
402 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
403 |
+
- 1 indicates the head is **not masked**,
|
404 |
+
- 0 indicates the head is **masked**.
|
405 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
406 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
407 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
408 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
409 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
410 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
411 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
412 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
413 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
414 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
415 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
416 |
+
than the model's internal embedding lookup matrix.
|
417 |
+
output_attentions (`bool`, *optional*):
|
418 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
419 |
+
returned tensors for more detail.
|
420 |
+
output_hidden_states (`bool`, *optional*):
|
421 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
422 |
+
for more detail.
|
423 |
+
return_dict (`bool`, *optional*):
|
424 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
425 |
+
"""
|
426 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
427 |
+
output_hidden_states = (
|
428 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
429 |
+
)
|
430 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
431 |
+
|
432 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
433 |
+
|
434 |
+
# retrieve input_ids and inputs_embeds
|
435 |
+
if input_ids is not None and inputs_embeds is not None:
|
436 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
437 |
+
elif input_ids is not None:
|
438 |
+
input_shape = input_ids.size()
|
439 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
440 |
+
elif inputs_embeds is not None:
|
441 |
+
input_shape = inputs_embeds.size()[:-1]
|
442 |
+
else:
|
443 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
444 |
+
|
445 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
446 |
+
|
447 |
+
if inputs_embeds is None:
|
448 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
449 |
+
|
450 |
+
# embed positions
|
451 |
+
if attention_mask is None:
|
452 |
+
attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device)
|
453 |
+
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
|
454 |
+
|
455 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
456 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
457 |
+
)
|
458 |
+
|
459 |
+
if self.project_in is not None:
|
460 |
+
inputs_embeds = self.project_in(inputs_embeds)
|
461 |
+
|
462 |
+
hidden_states = inputs_embeds + pos_embeds
|
463 |
+
|
464 |
+
# decoder layers
|
465 |
+
all_hidden_states = () if output_hidden_states else None
|
466 |
+
all_self_attns = () if output_attentions else None
|
467 |
+
next_decoder_cache = () if use_cache else None
|
468 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
469 |
+
|
470 |
+
|
471 |
+
# check if head_mask has a correct number of layers specified if desired
|
472 |
+
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
473 |
+
if attn_mask is not None:
|
474 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
475 |
+
raise ValueError(
|
476 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
477 |
+
f" {head_mask.size()[0]}."
|
478 |
+
)
|
479 |
+
|
480 |
+
for idx, decoder_layer in enumerate(self.layers):
|
481 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
482 |
+
if output_hidden_states:
|
483 |
+
all_hidden_states += (hidden_states,)
|
484 |
+
|
485 |
+
dropout_probability = random.uniform(0, 1)
|
486 |
+
if self.training and (dropout_probability < self.layerdrop):
|
487 |
+
continue
|
488 |
+
|
489 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
490 |
+
|
491 |
+
if self.gradient_checkpointing and self.training:
|
492 |
+
|
493 |
+
if use_cache:
|
494 |
+
logger.warning(
|
495 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
496 |
+
)
|
497 |
+
use_cache = False
|
498 |
+
|
499 |
+
def create_custom_forward(module):
|
500 |
+
def custom_forward(*inputs):
|
501 |
+
# None for past_key_value
|
502 |
+
return module(*inputs, output_attentions, None)
|
503 |
+
|
504 |
+
return custom_forward
|
505 |
+
|
506 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
507 |
+
create_custom_forward(decoder_layer),
|
508 |
+
hidden_states,
|
509 |
+
attention_mask,
|
510 |
+
head_mask[idx] if head_mask is not None else None,
|
511 |
+
None,
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
|
515 |
+
layer_outputs = decoder_layer(
|
516 |
+
hidden_states,
|
517 |
+
encoder_attention_mask=encoder_attention_mask,
|
518 |
+
encoder_hidden_states=encoder_hidden_states,
|
519 |
+
cross_attn_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
520 |
+
attention_mask=attention_mask,
|
521 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
522 |
+
past_key_value=past_key_value,
|
523 |
+
output_attentions=output_attentions,
|
524 |
+
use_cache=use_cache,
|
525 |
+
)
|
526 |
+
|
527 |
+
hidden_states = layer_outputs[0]
|
528 |
+
|
529 |
+
if use_cache:
|
530 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
531 |
+
|
532 |
+
if output_attentions:
|
533 |
+
all_self_attns += (layer_outputs[1],)
|
534 |
+
|
535 |
+
if self.final_layer_norm is not None:
|
536 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
537 |
+
|
538 |
+
if self.project_out is not None:
|
539 |
+
hidden_states = self.project_out(hidden_states)
|
540 |
+
|
541 |
+
# add hidden states from the last decoder layer
|
542 |
+
if output_hidden_states:
|
543 |
+
all_hidden_states += (hidden_states,)
|
544 |
+
|
545 |
+
if encoder_hidden_states is not None:
|
546 |
+
all_cross_attentions += (layer_outputs[2],)
|
547 |
+
|
548 |
+
next_cache = next_decoder_cache if use_cache else None
|
549 |
+
if not return_dict:
|
550 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
551 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
552 |
+
last_hidden_state=hidden_states,
|
553 |
+
past_key_values=next_cache,
|
554 |
+
hidden_states=all_hidden_states,
|
555 |
+
attentions=all_self_attns,
|
556 |
+
cross_attentions=all_cross_attentions,
|
557 |
+
)
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
|
562 |
+
class ThisOPTModel(OPTModel):
|
563 |
+
|
564 |
+
def __init__(self, config):
|
565 |
+
super().__init__(config)
|
566 |
+
self.decoder = ThisOPTDecoder(config)
|
567 |
+
|
568 |
+
def forward(
|
569 |
+
self,
|
570 |
+
input_ids = None,
|
571 |
+
attention_mask = None,
|
572 |
+
encoder_hidden_states=None,
|
573 |
+
encoder_attention_mask = None,
|
574 |
+
head_mask = None,
|
575 |
+
cross_attn_head_mask = None,
|
576 |
+
past_key_values = None,
|
577 |
+
inputs_embeds = None,
|
578 |
+
use_cache = None,
|
579 |
+
output_attentions = None,
|
580 |
+
output_hidden_states = None,
|
581 |
+
return_dict = None,
|
582 |
+
):
|
583 |
+
|
584 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
585 |
+
output_hidden_states = (
|
586 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
587 |
+
)
|
588 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
589 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
590 |
+
|
591 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
592 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
593 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
594 |
+
|
595 |
+
|
596 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
597 |
+
decoder_outputs = self.decoder(
|
598 |
+
input_ids=input_ids,
|
599 |
+
attention_mask=attention_mask,
|
600 |
+
encoder_hidden_states=encoder_hidden_states,
|
601 |
+
encoder_attention_mask=encoder_attention_mask,
|
602 |
+
cross_attn_head_mask=(
|
603 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
604 |
+
),
|
605 |
+
head_mask=head_mask,
|
606 |
+
past_key_values=past_key_values,
|
607 |
+
inputs_embeds=inputs_embeds,
|
608 |
+
use_cache=use_cache,
|
609 |
+
output_attentions=output_attentions,
|
610 |
+
output_hidden_states=output_hidden_states,
|
611 |
+
return_dict=return_dict,
|
612 |
+
)
|
613 |
+
|
614 |
+
|
615 |
+
if not return_dict:
|
616 |
+
return decoder_outputs
|
617 |
+
|
618 |
+
return BaseModelOutputWithPast(
|
619 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
620 |
+
past_key_values=decoder_outputs.past_key_values,
|
621 |
+
hidden_states=decoder_outputs.hidden_states,
|
622 |
+
attentions=decoder_outputs.attentions,
|
623 |
+
)
|
624 |
+
|
625 |
+
class ThisOPTForCausalLM(OPTForCausalLM):
|
626 |
+
config_class = ThisOPTConfig
|
627 |
+
|
628 |
+
def __init__(self, config):
|
629 |
+
super().__init__(config)
|
630 |
+
self.model = ThisOPTModel(config)
|
631 |
+
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
input_ids = None,
|
636 |
+
attention_mask = None,
|
637 |
+
encoder_hidden_states=None,
|
638 |
+
encoder_attention_mask = None,
|
639 |
+
head_mask = None,
|
640 |
+
cross_attn_head_mask = None,
|
641 |
+
past_key_values = None,
|
642 |
+
inputs_embeds = None,
|
643 |
+
labels = None,
|
644 |
+
use_cache = None,
|
645 |
+
output_attentions = None,
|
646 |
+
output_hidden_states = None,
|
647 |
+
return_dict = None,
|
648 |
+
) :
|
649 |
+
|
650 |
+
|
651 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
652 |
+
output_hidden_states = (
|
653 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
654 |
+
)
|
655 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
656 |
+
|
657 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
658 |
+
outputs = self.model.decoder(
|
659 |
+
input_ids=input_ids,
|
660 |
+
attention_mask=attention_mask,
|
661 |
+
encoder_hidden_states=encoder_hidden_states,
|
662 |
+
encoder_attention_mask = encoder_attention_mask,
|
663 |
+
cross_attn_head_mask = cross_attn_head_mask,
|
664 |
+
head_mask=head_mask,
|
665 |
+
past_key_values=past_key_values,
|
666 |
+
inputs_embeds=inputs_embeds,
|
667 |
+
use_cache=use_cache,
|
668 |
+
output_attentions=output_attentions,
|
669 |
+
output_hidden_states=output_hidden_states,
|
670 |
+
return_dict=return_dict,
|
671 |
+
)
|
672 |
+
|
673 |
+
logits = self.lm_head(outputs[0]).contiguous()
|
674 |
+
|
675 |
+
loss = None
|
676 |
+
if labels is not None:
|
677 |
+
# Shift so that tokens < n predict n
|
678 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
679 |
+
shift_labels = labels[..., 1:].contiguous()
|
680 |
+
# Flatten the tokens
|
681 |
+
loss_fct = CrossEntropyLoss()
|
682 |
+
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
683 |
+
|
684 |
+
if not return_dict:
|
685 |
+
output = (logits,) + outputs[1:]
|
686 |
+
return (loss,) + output if loss is not None else output
|
687 |
+
|
688 |
+
return CausalLMOutputWithCrossAttentions(
|
689 |
+
loss=loss,
|
690 |
+
logits=logits,
|
691 |
+
past_key_values=outputs.past_key_values,
|
692 |
+
hidden_states=outputs.hidden_states,
|
693 |
+
attentions=outputs.attentions,
|
694 |
+
cross_attentions=outputs.cross_attentions,
|
695 |
+
)
|
696 |
+
|
retrieve_caps.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from tqdm import tqdm
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import clip
|
5 |
+
import torch
|
6 |
+
import faiss
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from PIL import ImageFile
|
11 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
12 |
+
|
13 |
+
def load_coco_data(coco_data_path):
|
14 |
+
"""We load in all images and only the train captions."""
|
15 |
+
|
16 |
+
annotations = json.load(open(coco_data_path))['images']
|
17 |
+
images = []
|
18 |
+
captions = []
|
19 |
+
for item in annotations:
|
20 |
+
if item['split'] == 'restval':
|
21 |
+
item['split'] = 'train'
|
22 |
+
if item['split'] == 'train':
|
23 |
+
for sentence in item['sentences']:
|
24 |
+
captions.append({'image_id': item['cocoid'], 'caption': ' '.join(sentence['tokens'])})
|
25 |
+
images.append({'image_id': item['cocoid'], 'file_name': item['filename'].split('_')[-1]})
|
26 |
+
|
27 |
+
return images, captions
|
28 |
+
|
29 |
+
def filter_captions(data):
|
30 |
+
|
31 |
+
decoder_name = 'gpt2'
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder_name)
|
33 |
+
bs = 512
|
34 |
+
|
35 |
+
image_ids = [d['image_id'] for d in data]
|
36 |
+
caps = [d['caption'] for d in data]
|
37 |
+
encodings = []
|
38 |
+
for idx in range(0, len(data), bs):
|
39 |
+
encodings += tokenizer.batch_encode_plus(caps[idx:idx+bs], return_tensors='np')['input_ids'].tolist()
|
40 |
+
|
41 |
+
filtered_image_ids, filtered_captions = [], []
|
42 |
+
|
43 |
+
assert len(image_ids) == len(caps) and len(caps) == len(encodings)
|
44 |
+
for image_id, cap, encoding in zip(image_ids, caps, encodings):
|
45 |
+
if len(encoding) <= 25:
|
46 |
+
filtered_image_ids.append(image_id)
|
47 |
+
filtered_captions.append(cap)
|
48 |
+
|
49 |
+
return filtered_image_ids, filtered_captions
|
50 |
+
|
51 |
+
def encode_captions(captions, model, device):
|
52 |
+
|
53 |
+
bs = 256
|
54 |
+
encoded_captions = []
|
55 |
+
|
56 |
+
for idx in tqdm(range(0, len(captions), bs)):
|
57 |
+
with torch.no_grad():
|
58 |
+
input_ids = clip.tokenize(captions[idx:idx+bs]).to(device)
|
59 |
+
encoded_captions.append(model.encode_text(input_ids).cpu().numpy())
|
60 |
+
|
61 |
+
encoded_captions = np.concatenate(encoded_captions)
|
62 |
+
|
63 |
+
return encoded_captions
|
64 |
+
|
65 |
+
def encode_images(images, image_path, model, feature_extractor, device):
|
66 |
+
|
67 |
+
image_ids = [i['image_id'] for i in images]
|
68 |
+
|
69 |
+
bs = 64
|
70 |
+
image_features = []
|
71 |
+
|
72 |
+
for idx in tqdm(range(0, len(images), bs)):
|
73 |
+
image_input = [feature_extractor(Image.open(os.path.join(image_path, i['file_name'])))
|
74 |
+
for i in images[idx:idx+bs]]
|
75 |
+
with torch.no_grad():
|
76 |
+
image_features.append(model.encode_image(torch.tensor(np.stack(image_input)).to(device)).cpu().numpy())
|
77 |
+
|
78 |
+
image_features = np.concatenate(image_features)
|
79 |
+
|
80 |
+
return image_ids, image_features
|
81 |
+
|
82 |
+
def get_nns(captions, images, k=15):
|
83 |
+
xq = images.astype(np.float32)
|
84 |
+
xb = captions.astype(np.float32)
|
85 |
+
faiss.normalize_L2(xb)
|
86 |
+
index = faiss.IndexFlatIP(xb.shape[1])
|
87 |
+
index.add(xb)
|
88 |
+
faiss.normalize_L2(xq)
|
89 |
+
D, I = index.search(xq, k)
|
90 |
+
|
91 |
+
return index, I
|
92 |
+
|
93 |
+
def filter_nns(nns, xb_image_ids, captions, xq_image_ids):
|
94 |
+
""" We filter out nearest neighbors which are actual captions for the query image, keeping 7 neighbors per image."""
|
95 |
+
retrieved_captions = {}
|
96 |
+
for nns_list, image_id in zip(nns, xq_image_ids):
|
97 |
+
good_nns = []
|
98 |
+
for nn in zip(nns_list):
|
99 |
+
if xb_image_ids[nn] == image_id:
|
100 |
+
continue
|
101 |
+
good_nns.append(captions[nn])
|
102 |
+
if len(good_nns) == 7:
|
103 |
+
break
|
104 |
+
assert len(good_nns) == 7
|
105 |
+
retrieved_captions[image_id] = good_nns
|
106 |
+
return retrieved_captions
|
107 |
+
|
108 |
+
def main():
|
109 |
+
|
110 |
+
coco_data_path = 'data/dataset_coco.json' # path to Karpathy splits downloaded from Kaggle
|
111 |
+
image_path = 'data/images/'
|
112 |
+
|
113 |
+
print('Loading data')
|
114 |
+
images, captions = load_coco_data(coco_data_path)
|
115 |
+
|
116 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
117 |
+
clip_model, feature_extractor = clip.load("RN50x64", device=device)
|
118 |
+
|
119 |
+
print('Filtering captions')
|
120 |
+
xb_image_ids, captions = filter_captions(captions)
|
121 |
+
|
122 |
+
print('Encoding captions')
|
123 |
+
encoded_captions = encode_captions(captions, clip_model, device)
|
124 |
+
|
125 |
+
print('Encoding images')
|
126 |
+
xq_image_ids, encoded_images = encode_images(images, image_path, clip_model, feature_extractor, device)
|
127 |
+
|
128 |
+
print('Retrieving neighbors')
|
129 |
+
index, nns = get_nns(encoded_captions, encoded_images)
|
130 |
+
retrieved_caps = filter_nns(nns, xb_image_ids, captions, xq_image_ids)
|
131 |
+
|
132 |
+
print('Writing files')
|
133 |
+
faiss.write_index(index, "datastore/coco_index")
|
134 |
+
json.dump(captions, open('datastore/coco_index_captions.json', 'w'))
|
135 |
+
|
136 |
+
json.dump(retrieved_caps, open('data/retrieved_caps_resnet50x64.json', 'w'))
|
137 |
+
|
138 |
+
if __name__ == '__main__':
|
139 |
+
main()
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
retrieve_caps2.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import json
|
3 |
+
import os.path
|
4 |
+
import logging
|
5 |
+
import argparse
|
6 |
+
from tqdm import tqdm
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.backends.cudnn as cudnn
|
10 |
+
import clip
|
11 |
+
from collections import defaultdict
|
12 |
+
from PIL import Image
|
13 |
+
import faiss
|
14 |
+
import os
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
cudnn.benchmark = True
|
17 |
+
torch.manual_seed(0)
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
torch.cuda.manual_seed(0)
|
20 |
+
|
21 |
+
import gc
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
class ClipRetrieval():
|
26 |
+
def __init__(self, index_name):
|
27 |
+
self.datastore = faiss.read_index(index_name)
|
28 |
+
#self.datastore.nprobe=25
|
29 |
+
|
30 |
+
def get_nns(self, query_img, k=20):
|
31 |
+
#get k nearest image
|
32 |
+
D, I = self.datastore.search(query_img, k)
|
33 |
+
return D, I[:,:k]
|
34 |
+
|
35 |
+
|
36 |
+
class EvalDataset():
|
37 |
+
|
38 |
+
def __init__(self, dataset_splits, images_dir, images_names, clip_retrieval_processor, eval_split="val_images"):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
with open(dataset_splits) as f:
|
42 |
+
self.split = json.load(f)
|
43 |
+
|
44 |
+
self.split = self.split[eval_split]
|
45 |
+
self.images_dir= images_dir
|
46 |
+
|
47 |
+
with open(args.images_names) as f:
|
48 |
+
self.images_names = json.load(f)
|
49 |
+
|
50 |
+
self.clip_retrieval_processor = clip_retrieval_processor
|
51 |
+
|
52 |
+
def __getitem__(self, i):
|
53 |
+
coco_id = self.split[i]
|
54 |
+
|
55 |
+
image_filename= self.images_dir+self.images_names[coco_id]
|
56 |
+
img_open = Image.open(image_filename).copy()
|
57 |
+
img = np.array(img_open)
|
58 |
+
if len(img.shape) ==2 or img.shape[-1]!=3: #convert grey or CMYK to RGB
|
59 |
+
img_open = img_open.convert('RGB')
|
60 |
+
gc.collect()
|
61 |
+
|
62 |
+
print("img_open",np.array(img_open).shape)
|
63 |
+
|
64 |
+
#inputs_features_retrieval = self.clip_retrieval_processor(img_open).unsqueeze(0)
|
65 |
+
return self.clip_retrieval_processor(img_open).unsqueeze(0), coco_id
|
66 |
+
|
67 |
+
def __len__(self):
|
68 |
+
return len(self.split)
|
69 |
+
|
70 |
+
|
71 |
+
def evaluate(args):
|
72 |
+
|
73 |
+
#load data of the datastore (i.e., captions)
|
74 |
+
with open(args.index_captions) as f:
|
75 |
+
data_datastore = json.load(f)
|
76 |
+
|
77 |
+
datastore = ClipRetrieval(args.datastore_path)
|
78 |
+
datastore_name = args.datastore_path.split("/")[-1]
|
79 |
+
|
80 |
+
#load clip to encode the images that we want to retrieve captions for
|
81 |
+
clip_retrieval_model, clip_retrieval_feature_extractor = clip.load("RN50x64", device=device)
|
82 |
+
clip_retrieval_model.eval()
|
83 |
+
#data_loader to get images that we want to retrieve captions for
|
84 |
+
data_loader = torch.utils.data.DataLoader(
|
85 |
+
EvalDataset(
|
86 |
+
args.dataset_splits,
|
87 |
+
args.images_dir,
|
88 |
+
args.images_names,
|
89 |
+
clip_retrieval_feature_extractor,
|
90 |
+
args.split),
|
91 |
+
batch_size=1,
|
92 |
+
shuffle=True,
|
93 |
+
num_workers=1,
|
94 |
+
pin_memory=True
|
95 |
+
)
|
96 |
+
|
97 |
+
print("device",device)
|
98 |
+
nearest_caps={}
|
99 |
+
for data in tqdm(data_loader):
|
100 |
+
|
101 |
+
inputs_features_retrieval, coco_id = data
|
102 |
+
coco_id = coco_id[0]
|
103 |
+
|
104 |
+
#normalize images to retrieve (since datastore has also normalized captions)
|
105 |
+
inputs_features_retrieval = inputs_features_retrieval.to(device)
|
106 |
+
image_retrieval_features = clip_retrieval_model.encode_image(inputs_features_retrieval[0])
|
107 |
+
image_retrieval_features /= image_retrieval_features.norm(dim=-1, keepdim=True)
|
108 |
+
image_retrieval_features=image_retrieval_features.detach().cpu().numpy().astype(np.float32)
|
109 |
+
|
110 |
+
print("inputs_features_retrieval",inputs_features_retrieval.size())
|
111 |
+
print("image_retrieval_features",image_retrieval_features.shape)
|
112 |
+
|
113 |
+
D, nearest_ids=datastore.get_nns(image_retrieval_features, k=5)
|
114 |
+
print("D size", D.shape)
|
115 |
+
print("nea", nearest_ids.shape)
|
116 |
+
gc.collect()
|
117 |
+
|
118 |
+
#Since at inference batch is 1
|
119 |
+
D=D[0]
|
120 |
+
nearest_ids=nearest_ids[0]
|
121 |
+
|
122 |
+
list_of_similar_caps=defaultdict(list)
|
123 |
+
for index in range(len(nearest_ids)):
|
124 |
+
nearest_id = str(nearest_ids[index])
|
125 |
+
nearest_cap=data_datastore[nearest_id]
|
126 |
+
|
127 |
+
if len(nearest_cap.split()) > args.max_caption_len:
|
128 |
+
print("retrieve cap too big" )
|
129 |
+
continue
|
130 |
+
|
131 |
+
#distance=D[index]
|
132 |
+
#list_of_similar_caps[datastore_name].append((nearest_cap, str(distance)))
|
133 |
+
#list_of_similar_caps[datastore_name].append(nearest_cap)
|
134 |
+
|
135 |
+
#nearest_caps[str(coco_id)]=list_of_similar_caps
|
136 |
+
|
137 |
+
|
138 |
+
#save results
|
139 |
+
outputs_dir = os.path.join(args.output_path, "retrieved_caps")
|
140 |
+
if not os.path.exists(outputs_dir):
|
141 |
+
os.makedirs(outputs_dir)
|
142 |
+
|
143 |
+
data_name=dataset_splits.split("/")[-1]
|
144 |
+
|
145 |
+
name = "nearest_caps_"+data_name +"_w_"+datastore_name + "_"+ args.split
|
146 |
+
results_output_file_name = os.path.join(outputs_dir, name + ".json")
|
147 |
+
json.dump(nearest_caps, open(results_output_file_name, "w"))
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
def check_args(args):
|
152 |
+
parser = argparse.ArgumentParser()
|
153 |
+
|
154 |
+
#Info of the dataset to evaluate on (vizwiz, flick30k, msr-vtt)
|
155 |
+
parser.add_argument("--images_dir",help="Folder where the preprocessed image data is located", default="data/vizwiz/images")
|
156 |
+
parser.add_argument("--dataset_splits",help="File containing the dataset splits", default="data/vizwiz/dataset_splits.json")
|
157 |
+
parser.add_argument("--images_names",help="File containing the images names per id", default="data/vizwiz/images_names.json")
|
158 |
+
parser.add_argument("--split", default="val_images", choices=["val_images", "test_images"])
|
159 |
+
parser.add_argument("--max-caption-len", type=int, default=25)
|
160 |
+
|
161 |
+
#Which datastore to use (web, human)
|
162 |
+
parser.add_argument("--datastore_path", type=str, default="datastore2/vizwiz/vizwiz")
|
163 |
+
parser.add_argument("--index_captions",
|
164 |
+
help="File containing the captions of the datastore per id", default="datastore2/vizwiz/vizwiz.json")
|
165 |
+
parser.add_argument("--output-path",help="Folder where to store outputs", default="eval_vizwiz_with_datastore_from_vizwiz.json")
|
166 |
+
|
167 |
+
parsed_args = parser.parse_args(args)
|
168 |
+
return parsed_args
|
169 |
+
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
args = check_args(sys.argv[1:])
|
173 |
+
logging.basicConfig(
|
174 |
+
format='%(levelname)s: %(message)s', level=logging.INFO)
|
175 |
+
|
176 |
+
logging.info(args)
|
177 |
+
evaluate(args)
|
178 |
+
|
template.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Similar images show
|
2 |
+
|
3 |
+
||
|
4 |
+
|
5 |
+
This image shows
|
utils.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import h5py
|
6 |
+
import bisect
|
7 |
+
|
8 |
+
CAPTION_LENGTH = 25
|
9 |
+
SIMPLE_PREFIX = "This image shows "
|
10 |
+
|
11 |
+
def prep_strings(text, tokenizer, template=None, retrieved_caps=None, k=None, is_test=False, max_length=None):
|
12 |
+
|
13 |
+
if is_test:
|
14 |
+
padding = False
|
15 |
+
truncation = False
|
16 |
+
else:
|
17 |
+
padding = True
|
18 |
+
truncation = True
|
19 |
+
|
20 |
+
if retrieved_caps is not None:
|
21 |
+
infix = '\n\n'.join(retrieved_caps[:k]) + '.'
|
22 |
+
prefix = template.replace('||', infix)
|
23 |
+
else:
|
24 |
+
prefix = SIMPLE_PREFIX
|
25 |
+
|
26 |
+
prefix_ids = tokenizer.encode(prefix)
|
27 |
+
len_prefix = len(prefix_ids)
|
28 |
+
|
29 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
30 |
+
if truncation:
|
31 |
+
text_ids = text_ids[:CAPTION_LENGTH]
|
32 |
+
input_ids = prefix_ids + text_ids if not is_test else prefix_ids
|
33 |
+
|
34 |
+
# we ignore the prefix (minus one as the first subtoken in the prefix is not predicted)
|
35 |
+
label_ids = [-100] * (len_prefix - 1) + text_ids + [tokenizer.eos_token_id]
|
36 |
+
if padding:
|
37 |
+
input_ids += [tokenizer.pad_token_id] * (max_length - len(input_ids))
|
38 |
+
label_ids += [-100] * (max_length - len(label_ids))
|
39 |
+
|
40 |
+
if is_test:
|
41 |
+
return input_ids
|
42 |
+
else:
|
43 |
+
return input_ids, label_ids
|
44 |
+
|
45 |
+
def postprocess_preds(pred, tokenizer):
|
46 |
+
pred = pred.split(SIMPLE_PREFIX)[-1]
|
47 |
+
pred = pred.replace(tokenizer.pad_token, '')
|
48 |
+
if pred.startswith(tokenizer.bos_token):
|
49 |
+
pred = pred[len(tokenizer.bos_token):]
|
50 |
+
if pred.endswith(tokenizer.eos_token):
|
51 |
+
pred = pred[:-len(tokenizer.eos_token)]
|
52 |
+
return pred
|
53 |
+
|
54 |
+
class TrainDataset(Dataset):
|
55 |
+
def __init__(self, df, features_path, tokenizer, rag=False, template_path=None, k=None, max_caption_length=25):
|
56 |
+
self.df = df
|
57 |
+
self.tokenizer = tokenizer
|
58 |
+
self.features = h5py.File(features_path, 'r')
|
59 |
+
|
60 |
+
if rag:
|
61 |
+
self.template = open(template_path).read().strip() + ' '
|
62 |
+
self.max_target_length = (max_caption_length # target caption
|
63 |
+
+ max_caption_length * k # retrieved captions
|
64 |
+
+ len(tokenizer.encode(self.template)) # template
|
65 |
+
+ len(tokenizer.encode('\n\n')) * (k-1) # separator between captions
|
66 |
+
)
|
67 |
+
assert k is not None
|
68 |
+
self.k = k
|
69 |
+
self.rag = rag
|
70 |
+
|
71 |
+
def __len__(self):
|
72 |
+
return len(self.df)
|
73 |
+
|
74 |
+
def __getitem__(self, idx):
|
75 |
+
text = self.df['text'][idx]
|
76 |
+
if self.rag:
|
77 |
+
caps = self.df['caps'][idx]
|
78 |
+
decoder_input_ids, labels = prep_strings(text, self.tokenizer, template=self.template,
|
79 |
+
retrieved_caps=caps, k=self.k, max_length=self.max_target_length)
|
80 |
+
else:
|
81 |
+
decoder_input_ids, labels = prep_strings(text, self.tokenizer, max_length=self.max_target_length)
|
82 |
+
# load precomputed features
|
83 |
+
encoder_outputs = self.features[self.df['cocoid'][idx]][()]
|
84 |
+
encoding = {"encoder_outputs": torch.tensor(encoder_outputs),
|
85 |
+
"decoder_input_ids": torch.tensor(decoder_input_ids),
|
86 |
+
"labels": torch.tensor(labels)}
|
87 |
+
|
88 |
+
return encoding
|
89 |
+
|
90 |
+
|
91 |
+
def load_data_for_training(annot_path, caps_path=None):
|
92 |
+
annotations = json.load(open(annot_path))['images']
|
93 |
+
if caps_path is not None:
|
94 |
+
retrieved_caps = json.load(open(caps_path))
|
95 |
+
data = {'train': [], 'val': []}
|
96 |
+
|
97 |
+
for item in annotations:
|
98 |
+
file_name = item['filename'].split('_')[-1]
|
99 |
+
if caps_path is not None:
|
100 |
+
caps = retrieved_caps[str(item['cocoid'])]
|
101 |
+
else:
|
102 |
+
caps = None
|
103 |
+
samples = []
|
104 |
+
for sentence in item['sentences']:
|
105 |
+
samples.append({'file_name': file_name, 'cocoid': str(item['cocoid']), 'caps': caps, 'text': ' '.join(sentence['tokens'])})
|
106 |
+
if item['split'] == 'train' or item['split'] == 'restval':
|
107 |
+
data['train'] += samples
|
108 |
+
elif item['split'] == 'val':
|
109 |
+
data['val'] += samples
|
110 |
+
return data
|
111 |
+
|
112 |
+
def load_data_for_inference(annot_path, caps_path=None):
|
113 |
+
annotations = json.load(open(annot_path))['images']
|
114 |
+
if caps_path is not None:
|
115 |
+
retrieved_caps = json.load(open(caps_path))
|
116 |
+
data = {'test': [], 'val': []}
|
117 |
+
|
118 |
+
for item in annotations:
|
119 |
+
file_name = item['filename'].split('_')[-1]
|
120 |
+
if caps_path is not None:
|
121 |
+
caps = retrieved_caps[str(item['cocoid'])]
|
122 |
+
else:
|
123 |
+
caps = None
|
124 |
+
image = {'file_name': file_name, 'caps': caps, 'image_id': str(item['cocoid'])}
|
125 |
+
if item['split'] == 'test':
|
126 |
+
data['test'].append(image)
|
127 |
+
elif item['split'] == 'val':
|
128 |
+
data['val'].append(image)
|
129 |
+
|
130 |
+
return data
|
131 |
+
|
utils_generate_retrieved_caps.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import h5py
|
6 |
+
import bisect
|
7 |
+
|
8 |
+
CAPTION_LENGTH = 25
|
9 |
+
SIMPLE_PREFIX = "This image shows "
|
10 |
+
|
11 |
+
def prep_strings(text, tokenizer, template=None, retrieved_caps=None, k=None, is_test=False, max_length=None):
|
12 |
+
|
13 |
+
if is_test:
|
14 |
+
padding = False
|
15 |
+
truncation = False
|
16 |
+
else:
|
17 |
+
padding = True
|
18 |
+
truncation = True
|
19 |
+
|
20 |
+
if retrieved_caps is not None:
|
21 |
+
infix = '\n\n'.join(retrieved_caps[:k]) + '.'
|
22 |
+
prefix = template.replace('||', infix)
|
23 |
+
else:
|
24 |
+
prefix = SIMPLE_PREFIX
|
25 |
+
|
26 |
+
prefix_ids = tokenizer.encode(prefix)
|
27 |
+
len_prefix = len(prefix_ids)
|
28 |
+
|
29 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
30 |
+
if truncation:
|
31 |
+
text_ids = text_ids[:CAPTION_LENGTH]
|
32 |
+
input_ids = prefix_ids + text_ids if not is_test else prefix_ids
|
33 |
+
|
34 |
+
# we ignore the prefix (minus one as the first subtoken in the prefix is not predicted)
|
35 |
+
label_ids = [-100] * (len_prefix - 1) + text_ids + [tokenizer.eos_token_id]
|
36 |
+
if padding:
|
37 |
+
input_ids += [tokenizer.pad_token_id] * (max_length - len(input_ids))
|
38 |
+
label_ids += [-100] * (max_length - len(label_ids))
|
39 |
+
|
40 |
+
if is_test:
|
41 |
+
return input_ids
|
42 |
+
else:
|
43 |
+
return input_ids, label_ids
|
44 |
+
|
45 |
+
def postprocess_preds(pred, tokenizer):
|
46 |
+
pred = pred.split(SIMPLE_PREFIX)[-1]
|
47 |
+
pred = pred.replace(tokenizer.pad_token, '')
|
48 |
+
if pred.startswith(tokenizer.bos_token):
|
49 |
+
pred = pred[len(tokenizer.bos_token):]
|
50 |
+
if pred.endswith(tokenizer.eos_token):
|
51 |
+
pred = pred[:-len(tokenizer.eos_token)]
|
52 |
+
return pred
|
53 |
+
|
54 |
+
class TrainDataset(Dataset):
|
55 |
+
def __init__(self, df, features_path, tokenizer, rag=False, template_path=None, k=None, max_caption_length=25):
|
56 |
+
self.df = df
|
57 |
+
self.tokenizer = tokenizer
|
58 |
+
self.features = h5py.File(features_path, 'r')
|
59 |
+
|
60 |
+
if rag:
|
61 |
+
self.template = open(template_path).read().strip() + ' '
|
62 |
+
self.max_target_length = (max_caption_length # target caption
|
63 |
+
+ max_caption_length * k # retrieved captions
|
64 |
+
+ len(tokenizer.encode(self.template)) # template
|
65 |
+
+ len(tokenizer.encode('\n\n')) * (k-1) # separator between captions
|
66 |
+
)
|
67 |
+
assert k is not None
|
68 |
+
self.k = k
|
69 |
+
self.rag = rag
|
70 |
+
|
71 |
+
def __len__(self):
|
72 |
+
return len(self.df)
|
73 |
+
|
74 |
+
def __getitem__(self, idx):
|
75 |
+
text = self.df['text'][idx]
|
76 |
+
if self.rag:
|
77 |
+
caps = self.df['caps'][idx]
|
78 |
+
decoder_input_ids, labels = prep_strings(text, self.tokenizer, template=self.template,
|
79 |
+
retrieved_caps=caps, k=self.k, max_length=self.max_target_length)
|
80 |
+
else:
|
81 |
+
decoder_input_ids, labels = prep_strings(text, self.tokenizer, max_length=self.max_target_length)
|
82 |
+
# load precomputed features
|
83 |
+
encoder_outputs = self.features[self.df['cocoid'][idx]][()]
|
84 |
+
encoding = {"encoder_outputs": torch.tensor(encoder_outputs),
|
85 |
+
"decoder_input_ids": torch.tensor(decoder_input_ids),
|
86 |
+
"labels": torch.tensor(labels)}
|
87 |
+
|
88 |
+
return encoding
|
89 |
+
|
90 |
+
|
91 |
+
def load_data_for_training(annot_path, caps_path=None):
|
92 |
+
annotations = json.load(open(annot_path))['images']
|
93 |
+
if caps_path is not None:
|
94 |
+
retrieved_caps = json.load(open(caps_path))
|
95 |
+
data = {'train': [], 'val': []}
|
96 |
+
|
97 |
+
for item in annotations:
|
98 |
+
file_name = item['filename'].split('_')[-1]
|
99 |
+
caps = retrieved_caps[str(item['cocoid'])]
|
100 |
+
|
101 |
+
samples = []
|
102 |
+
for sentence in item['sentences']:
|
103 |
+
print("how are the retrieved caps", caps + ' '.join(sentence['tokens']))
|
104 |
+
|
105 |
+
samples.append({'file_name': file_name, 'cocoid': str(item['cocoid']), 'caps': None, 'text': " ".join(caps) + ' '.join(sentence['tokens'])})
|
106 |
+
if item['split'] == 'train' or item['split'] == 'restval':
|
107 |
+
data['train'] += samples
|
108 |
+
elif item['split'] == 'val':
|
109 |
+
data['val'] += samples
|
110 |
+
return data
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
def load_data_for_inference(annot_path, caps_path=None):
|
117 |
+
annotations = json.load(open(annot_path))['images']
|
118 |
+
if caps_path is not None:
|
119 |
+
retrieved_caps = json.load(open(caps_path))
|
120 |
+
data = {'test': [], 'val': []}
|
121 |
+
|
122 |
+
for item in annotations:
|
123 |
+
file_name = item['filename'].split('_')[-1]
|
124 |
+
if caps_path is not None:
|
125 |
+
caps = retrieved_caps[str(item['cocoid'])]
|
126 |
+
else:
|
127 |
+
caps = None
|
128 |
+
image = {'file_name': file_name, 'caps': caps, 'image_id': str(item['cocoid'])}
|
129 |
+
if item['split'] == 'test':
|
130 |
+
data['test'].append(image)
|
131 |
+
elif item['split'] == 'val':
|
132 |
+
data['val'].append(image)
|
133 |
+
|
134 |
+
return data
|
135 |
+
|
vision_encoder_decoder.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Classes to support Vision-Encoder-Text-Decoder architectures"""
|
16 |
+
import timeit
|
17 |
+
|
18 |
+
from typing import Optional
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
from transformers.configuration_utils import PretrainedConfig
|
24 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
#from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
27 |
+
from transformers.utils import logging
|
28 |
+
from transformers.models.auto.configuration_auto import AutoConfig
|
29 |
+
from transformers.models.auto.modeling_auto import AutoModel, AutoModelForCausalLM
|
30 |
+
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
|
31 |
+
import inspect
|
32 |
+
|
33 |
+
from .gpt2 import ThisGPT2LMHeadModel
|
34 |
+
from .gpt2 import ThisGPT2Config
|
35 |
+
from .xglm import ThisXGLMForCausalLM
|
36 |
+
from .xglm import ThisXGLMConfig
|
37 |
+
from .opt import ThisOPTForCausalLM
|
38 |
+
from .opt import ThisOPTConfig
|
39 |
+
|
40 |
+
# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
|
41 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
42 |
+
"""
|
43 |
+
Shift input ids one token to the right.
|
44 |
+
"""
|
45 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
46 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
47 |
+
if decoder_start_token_id is None:
|
48 |
+
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
|
49 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
50 |
+
|
51 |
+
if pad_token_id is None:
|
52 |
+
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
|
53 |
+
# replace possible -100 values in labels by `pad_token_id`
|
54 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
55 |
+
|
56 |
+
return shifted_input_ids
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "SmallCapConfig"
|
62 |
+
|
63 |
+
VISION_ENCODER_DECODER_START_DOCSTRING = r"""
|
64 |
+
This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model
|
65 |
+
as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via
|
66 |
+
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
|
67 |
+
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
|
68 |
+
generative task, like image captioning.
|
69 |
+
|
70 |
+
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
|
71 |
+
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
|
72 |
+
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
|
73 |
+
Zhou, Wei Li, Peter J. Liu.
|
74 |
+
|
75 |
+
Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
|
76 |
+
Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical
|
77 |
+
character recognition (OCR) yields a significant performance improvement.
|
78 |
+
|
79 |
+
After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any
|
80 |
+
other models (see the examples for more information).
|
81 |
+
|
82 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
83 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
84 |
+
etc.)
|
85 |
+
|
86 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
87 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
88 |
+
and behavior.
|
89 |
+
|
90 |
+
Parameters:
|
91 |
+
config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
|
92 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
93 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
94 |
+
"""
|
95 |
+
|
96 |
+
VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
|
97 |
+
Args:
|
98 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
99 |
+
Pixel values. Pixel values can be obtained using a feature extractor (e.g. if you use ViT as the encoder,
|
100 |
+
you should use [`ViTFeatureExtractor`]). See [`ViTFeatureExtractor.__call__`] for details.
|
101 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
102 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
103 |
+
|
104 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
105 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
106 |
+
|
107 |
+
[What are input IDs?](../glossary#input-ids)
|
108 |
+
|
109 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
110 |
+
`past_key_values`).
|
111 |
+
|
112 |
+
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
|
113 |
+
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
|
114 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
115 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
116 |
+
be used by default.
|
117 |
+
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
|
118 |
+
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
119 |
+
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
|
120 |
+
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
|
121 |
+
decoder.
|
122 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
123 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
124 |
+
|
125 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
126 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
127 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
128 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
129 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
130 |
+
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
|
131 |
+
into associated vectors than the model's internal embedding lookup matrix.
|
132 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
133 |
+
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
|
134 |
+
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
135 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
136 |
+
use_cache (`bool`, *optional*):
|
137 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
138 |
+
`past_key_values`).
|
139 |
+
output_attentions (`bool`, *optional*):
|
140 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
141 |
+
tensors for more detail.
|
142 |
+
output_hidden_states (`bool`, *optional*):
|
143 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
144 |
+
more detail.
|
145 |
+
return_dict (`bool`, *optional*):
|
146 |
+
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
|
147 |
+
kwargs: (*optional*) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
|
148 |
+
|
149 |
+
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
|
150 |
+
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
|
151 |
+
"""
|
152 |
+
|
153 |
+
class SmallCapConfig(VisionEncoderDecoderConfig):
|
154 |
+
model_type = "smallcap"
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
**kwargs,
|
159 |
+
):
|
160 |
+
super().__init__(**kwargs)
|
161 |
+
|
162 |
+
|
163 |
+
class SmallCap(PreTrainedModel):
|
164 |
+
r"""
|
165 |
+
[`VisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with
|
166 |
+
one of the base vision model classes of the library as encoder and another one as decoder when created with the
|
167 |
+
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
|
168 |
+
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
|
169 |
+
"""
|
170 |
+
config_class = SmallCapConfig
|
171 |
+
base_model_prefix = "smallcap"
|
172 |
+
main_input_name = "pixel_values"
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
config: Optional[PretrainedConfig] = None,
|
177 |
+
encoder: Optional[PreTrainedModel] = None,
|
178 |
+
decoder: Optional[PreTrainedModel] = None,
|
179 |
+
):
|
180 |
+
if config is None and (encoder is None or decoder is None):
|
181 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
182 |
+
if config is None:
|
183 |
+
config = SmallCapConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
184 |
+
else:
|
185 |
+
if not isinstance(config, self.config_class):
|
186 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
187 |
+
|
188 |
+
if config.decoder.cross_attention_hidden_size is not None:
|
189 |
+
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
|
190 |
+
raise ValueError(
|
191 |
+
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal#"
|
192 |
+
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
|
193 |
+
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
|
194 |
+
" `config.encoder.hidden_size`."
|
195 |
+
)
|
196 |
+
|
197 |
+
# initialize with config
|
198 |
+
# make sure input & output embeddings is not tied
|
199 |
+
config.tie_word_embeddings = False
|
200 |
+
super().__init__(config)
|
201 |
+
|
202 |
+
if encoder is None:
|
203 |
+
encoder = AutoModel.from_config(config.encoder)
|
204 |
+
|
205 |
+
if decoder is None:
|
206 |
+
decoder = AutoModelForCausalLM.from_config(config.decoder)
|
207 |
+
|
208 |
+
self.encoder = encoder.vision_model
|
209 |
+
self.encoder.main_input_name = 'pixel_values'
|
210 |
+
self.decoder = decoder
|
211 |
+
# make sure that the individual model's config refers to the shared config
|
212 |
+
# so that the updates to the config will be synced
|
213 |
+
self.encoder.config = self.config.encoder
|
214 |
+
self.decoder.config = self.config.decoder
|
215 |
+
|
216 |
+
def get_encoder(self):
|
217 |
+
return self.encoder
|
218 |
+
|
219 |
+
def get_decoder(self):
|
220 |
+
return self.decoder
|
221 |
+
|
222 |
+
def get_output_embeddings(self):
|
223 |
+
return self.decoder.get_output_embeddings()
|
224 |
+
|
225 |
+
def set_output_embeddings(self, new_embeddings):
|
226 |
+
return self.decoder.set_output_embeddings(new_embeddings)
|
227 |
+
|
228 |
+
@classmethod
|
229 |
+
def from_pretrained(cls, *args, **kwargs):
|
230 |
+
# At the moment fast initialization is not supported for composite models
|
231 |
+
if kwargs.get("_fast_init", False):
|
232 |
+
logger.warning(
|
233 |
+
"Fast initialization is currently not supported for VisionEncoderDecoderModel. "
|
234 |
+
"Falling back to slow initialization..."
|
235 |
+
)
|
236 |
+
kwargs["_fast_init"] = False
|
237 |
+
return super().from_pretrained(*args, **kwargs)
|
238 |
+
|
239 |
+
@classmethod
|
240 |
+
def from_encoder_decoder_pretrained(
|
241 |
+
cls,
|
242 |
+
encoder_pretrained_model_name_or_path: str = None,
|
243 |
+
decoder_pretrained_model_name_or_path: str = None,
|
244 |
+
cross_attention_reduce_factor: int = None,
|
245 |
+
*model_args,
|
246 |
+
**kwargs
|
247 |
+
) -> PreTrainedModel:
|
248 |
+
r"""
|
249 |
+
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
250 |
+
checkpoints.
|
251 |
+
|
252 |
+
|
253 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
254 |
+
the model, you need to first set it back in training mode with `model.train()`.
|
255 |
+
|
256 |
+
Params:
|
257 |
+
encoder_pretrained_model_name_or_path (`str`, *optional*):
|
258 |
+
Information necessary to initiate the image encoder. Can be either:
|
259 |
+
|
260 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
|
261 |
+
example is `google/vit-base-patch16-224-in21k`.
|
262 |
+
- A path to a *directory* containing model weights saved using
|
263 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
264 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
265 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
266 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
267 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
268 |
+
|
269 |
+
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
270 |
+
Information necessary to initiate the text decoder. Can be either:
|
271 |
+
|
272 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
273 |
+
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
|
274 |
+
user or organization name, like `dbmdz/bert-base-german-cased`.
|
275 |
+
- A path to a *directory* containing model weights saved using
|
276 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
277 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
278 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
279 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
280 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
281 |
+
|
282 |
+
model_args (remaining positional arguments, *optional*):
|
283 |
+
All remaning positional arguments will be passed to the underlying model's `__init__` method.
|
284 |
+
|
285 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
286 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
287 |
+
`output_attentions=True`).
|
288 |
+
|
289 |
+
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
290 |
+
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
291 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
292 |
+
|
293 |
+
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
294 |
+
|
295 |
+
Example:
|
296 |
+
|
297 |
+
```python
|
298 |
+
>>> from transformers import VisionEncoderDecoderModel
|
299 |
+
|
300 |
+
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
|
301 |
+
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
302 |
+
... "google/vit-base-patch16-224-in21k", "bert-base-uncased"
|
303 |
+
... )
|
304 |
+
>>> # saving model after fine-tuning
|
305 |
+
>>> model.save_pretrained("./vit-bert")
|
306 |
+
>>> # load fine-tuned model
|
307 |
+
>>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
|
308 |
+
```"""
|
309 |
+
|
310 |
+
kwargs_encoder = {
|
311 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
312 |
+
}
|
313 |
+
|
314 |
+
kwargs_decoder = {
|
315 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
316 |
+
}
|
317 |
+
|
318 |
+
# remove encoder, decoder kwargs from kwargs
|
319 |
+
for key in kwargs_encoder.keys():
|
320 |
+
del kwargs["encoder_" + key]
|
321 |
+
for key in kwargs_decoder.keys():
|
322 |
+
del kwargs["decoder_" + key]
|
323 |
+
|
324 |
+
# Load and initialize the encoder and decoder
|
325 |
+
# The distinction between encoder and decoder at the model level is made
|
326 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
327 |
+
encoder = kwargs_encoder.pop("model", None)
|
328 |
+
if encoder is None:
|
329 |
+
if encoder_pretrained_model_name_or_path is None:
|
330 |
+
raise ValueError(
|
331 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
332 |
+
"to be defined."
|
333 |
+
)
|
334 |
+
|
335 |
+
if "config" not in kwargs_encoder:
|
336 |
+
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
|
337 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
338 |
+
)
|
339 |
+
|
340 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
341 |
+
logger.info(
|
342 |
+
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
343 |
+
"from a decoder model. Cross-attention and casual mask are disabled."
|
344 |
+
)
|
345 |
+
encoder_config.is_decoder = False
|
346 |
+
encoder_config.add_cross_attention = False
|
347 |
+
|
348 |
+
kwargs_encoder["config"] = encoder_config
|
349 |
+
|
350 |
+
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
351 |
+
|
352 |
+
decoder = kwargs_decoder.pop("model", None)
|
353 |
+
if decoder is None:
|
354 |
+
if decoder_pretrained_model_name_or_path is None:
|
355 |
+
raise ValueError(
|
356 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
357 |
+
"to be defined."
|
358 |
+
)
|
359 |
+
|
360 |
+
if "config" not in kwargs_decoder:
|
361 |
+
if "xglm" in decoder_pretrained_model_name_or_path:
|
362 |
+
decoder_config, kwargs_decoder = ThisXGLMConfig.from_pretrained(
|
363 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
364 |
+
)
|
365 |
+
|
366 |
+
elif "opt" in decoder_pretrained_model_name_or_path:
|
367 |
+
decoder_config, kwargs_decoder = ThisOPTConfig.from_pretrained(
|
368 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
369 |
+
)
|
370 |
+
|
371 |
+
else:
|
372 |
+
decoder_config, kwargs_decoder = ThisGPT2Config.from_pretrained(
|
373 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
374 |
+
)
|
375 |
+
|
376 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
377 |
+
logger.info(
|
378 |
+
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
379 |
+
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
380 |
+
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
381 |
+
)
|
382 |
+
decoder_config.is_decoder = True
|
383 |
+
decoder_config.add_cross_attention = True
|
384 |
+
decoder_config.encoder_hidden_size = encoder.config.vision_config.hidden_size
|
385 |
+
decoder_config.cross_attention_reduce_factor = cross_attention_reduce_factor
|
386 |
+
kwargs_decoder["config"] = decoder_config
|
387 |
+
|
388 |
+
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
389 |
+
logger.warning(
|
390 |
+
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
391 |
+
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
392 |
+
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
393 |
+
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
394 |
+
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
395 |
+
)
|
396 |
+
|
397 |
+
#decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
398 |
+
if "xglm" in decoder_pretrained_model_name_or_path:
|
399 |
+
decoder = ThisXGLMForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
400 |
+
|
401 |
+
elif "opt" in decoder_pretrained_model_name_or_path:
|
402 |
+
decoder = ThisOPTForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
403 |
+
else:
|
404 |
+
decoder = ThisGPT2LMHeadModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
405 |
+
|
406 |
+
# instantiate config with corresponding kwargs
|
407 |
+
config = SmallCapConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
408 |
+
|
409 |
+
# make sure input & output embeddings is not tied
|
410 |
+
config.tie_word_embeddings = False
|
411 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
412 |
+
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
pixel_values=None,
|
416 |
+
decoder_input_ids=None,
|
417 |
+
decoder_attention_mask=None,
|
418 |
+
encoder_outputs=None,
|
419 |
+
past_key_values=None,
|
420 |
+
decoder_inputs_embeds=None,
|
421 |
+
labels=None,
|
422 |
+
use_cache=None,
|
423 |
+
output_attentions=None,
|
424 |
+
output_hidden_states=None,
|
425 |
+
return_dict=None,
|
426 |
+
**kwargs,
|
427 |
+
):
|
428 |
+
r"""
|
429 |
+
Returns:
|
430 |
+
|
431 |
+
Examples:
|
432 |
+
|
433 |
+
```python
|
434 |
+
>>> from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
435 |
+
>>> import requests
|
436 |
+
>>> from PIL import Image
|
437 |
+
>>> import torch
|
438 |
+
|
439 |
+
>>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
440 |
+
>>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
441 |
+
|
442 |
+
>>> # load image from the IAM dataset
|
443 |
+
>>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
|
444 |
+
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
445 |
+
|
446 |
+
>>> # training
|
447 |
+
>>> model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
448 |
+
>>> model.config.pad_token_id = processor.tokenizer.pad_token_id
|
449 |
+
>>> model.config.vocab_size = model.config.decoder.vocab_size
|
450 |
+
|
451 |
+
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
452 |
+
>>> text = "hello world"
|
453 |
+
>>> labels = processor.tokenizer(text, return_tensors="pt").input_ids
|
454 |
+
>>> outputs = model(pixel_values=pixel_values, labels=labels)
|
455 |
+
>>> loss = outputs.loss
|
456 |
+
|
457 |
+
>>> # inference (generation)
|
458 |
+
>>> generated_ids = model.generate(pixel_values)
|
459 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
460 |
+
```"""
|
461 |
+
|
462 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
463 |
+
|
464 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
465 |
+
|
466 |
+
kwargs_decoder = {
|
467 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
468 |
+
}
|
469 |
+
if encoder_outputs is None:
|
470 |
+
if pixel_values is None:
|
471 |
+
raise ValueError("You have to specify pixel_values")
|
472 |
+
|
473 |
+
encoder_outputs = self.encoder(
|
474 |
+
pixel_values=pixel_values,
|
475 |
+
output_attentions=output_attentions,
|
476 |
+
output_hidden_states=output_hidden_states,
|
477 |
+
return_dict=return_dict,
|
478 |
+
**kwargs_encoder,
|
479 |
+
)
|
480 |
+
elif isinstance(encoder_outputs, tuple):
|
481 |
+
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
482 |
+
else:
|
483 |
+
encoder_outputs = BaseModelOutput(encoder_outputs, None)
|
484 |
+
|
485 |
+
encoder_hidden_states = encoder_outputs[0]
|
486 |
+
|
487 |
+
# else:
|
488 |
+
encoder_attention_mask = None
|
489 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
490 |
+
decoder_input_ids = shift_tokens_right(
|
491 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
492 |
+
)
|
493 |
+
|
494 |
+
# Decode
|
495 |
+
decoder_outputs = self.decoder(
|
496 |
+
input_ids=decoder_input_ids,
|
497 |
+
attention_mask=decoder_attention_mask,
|
498 |
+
encoder_hidden_states=encoder_hidden_states,
|
499 |
+
encoder_attention_mask=encoder_attention_mask,
|
500 |
+
inputs_embeds=decoder_inputs_embeds,
|
501 |
+
output_attentions=output_attentions,
|
502 |
+
output_hidden_states=output_hidden_states,
|
503 |
+
use_cache=use_cache,
|
504 |
+
past_key_values=past_key_values,
|
505 |
+
return_dict=return_dict,
|
506 |
+
**kwargs_decoder,
|
507 |
+
)
|
508 |
+
|
509 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
510 |
+
loss = None
|
511 |
+
if labels is not None:
|
512 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
513 |
+
loss_fct = CrossEntropyLoss()
|
514 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
|
515 |
+
|
516 |
+
if not return_dict:
|
517 |
+
if loss is not None:
|
518 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
519 |
+
else:
|
520 |
+
return decoder_outputs + encoder_outputs
|
521 |
+
|
522 |
+
return Seq2SeqLMOutput(
|
523 |
+
loss=loss,
|
524 |
+
logits=decoder_outputs.logits,
|
525 |
+
past_key_values=decoder_outputs.past_key_values,
|
526 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
527 |
+
decoder_attentions=decoder_outputs.attentions,
|
528 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
529 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
530 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
531 |
+
encoder_attentions=encoder_outputs.attentions,
|
532 |
+
)
|
533 |
+
|
534 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
535 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
536 |
+
|
537 |
+
def prepare_inputs_for_generation(
|
538 |
+
self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
539 |
+
):
|
540 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past=past)
|
541 |
+
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
|
542 |
+
input_dict = {
|
543 |
+
"attention_mask": attention_mask,
|
544 |
+
"decoder_attention_mask": decoder_attention_mask,
|
545 |
+
"decoder_input_ids": decoder_inputs["input_ids"],
|
546 |
+
"encoder_outputs": encoder_outputs,
|
547 |
+
"past_key_values": decoder_inputs["past_key_values"],
|
548 |
+
"use_cache": use_cache,
|
549 |
+
}
|
550 |
+
return input_dict
|
551 |
+
|
552 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
553 |
+
raise NotImplementedError(
|
554 |
+
"Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
|
555 |
+
" respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
|
556 |
+
)
|
557 |
+
|
558 |
+
def _reorder_cache(self, past, beam_idx):
|
559 |
+
# apply decoder cache reordering here
|
560 |
+
return self.decoder._reorder_cache(past, beam_idx)
|
xglm.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch OpenAI GPT-2 model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from packaging import version
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from transformers.models.gpt2.modeling_gpt2 import load_tf_weights_in_gpt2, GPT2LMHeadModel, GPT2MLP, GPT2Attention, GPT2Block, GPT2Model
|
30 |
+
|
31 |
+
from transformers.models.xglm.modeling_xglm import XGLMForCausalLM, XGLMAttention, XGLMDecoderLayer, XGLMModel
|
32 |
+
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.modeling_outputs import (
|
35 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
36 |
+
CausalLMOutputWithCrossAttentions,
|
37 |
+
SequenceClassifierOutputWithPast,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
41 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
42 |
+
from transformers.utils import (
|
43 |
+
ModelOutput,
|
44 |
+
logging,
|
45 |
+
)
|
46 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
47 |
+
from transformers.models.xglm.configuration_xglm import XGLMConfig
|
48 |
+
|
49 |
+
|
50 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
51 |
+
is_amp_available = True
|
52 |
+
from torch.cuda.amp import autocast
|
53 |
+
else:
|
54 |
+
is_amp_available = False
|
55 |
+
|
56 |
+
|
57 |
+
class ThisXGLMConfig(XGLMConfig):
|
58 |
+
model_type = "this_xglm"
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
cross_attention_reduce_factor = 1,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
super().__init__(**kwargs)
|
66 |
+
self.cross_attention_reduce_factor = cross_attention_reduce_factor
|
67 |
+
|
68 |
+
|
69 |
+
class ThisXGLMAttention(XGLMAttention):
|
70 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
embed_dim,
|
75 |
+
num_heads,
|
76 |
+
dropout= 0.0,
|
77 |
+
is_decoder= False,
|
78 |
+
bias= True,
|
79 |
+
config=None,
|
80 |
+
is_cross_attention=False,
|
81 |
+
):
|
82 |
+
super().__init__(embed_dim,num_heads, dropout,is_decoder,bias)
|
83 |
+
self.embed_dim = embed_dim
|
84 |
+
self.num_heads = num_heads
|
85 |
+
self.dropout = dropout
|
86 |
+
self.head_dim = embed_dim // num_heads
|
87 |
+
|
88 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
89 |
+
raise ValueError(
|
90 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
91 |
+
f" and `num_heads`: {num_heads})."
|
92 |
+
)
|
93 |
+
self.scaling = self.head_dim**-0.5
|
94 |
+
self.is_decoder = is_decoder
|
95 |
+
|
96 |
+
self.cross_attention_reduce_factor = config.cross_attention_reduce_factor
|
97 |
+
self.head_dim = int(self.head_dim / self.cross_attention_reduce_factor)
|
98 |
+
|
99 |
+
|
100 |
+
if is_cross_attention:
|
101 |
+
#print("self", int(embed_dim / self.cross_attention_reduce_factor))
|
102 |
+
self.k_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias)
|
103 |
+
#print("self.k_proj",self.k_proj)
|
104 |
+
self.v_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias)
|
105 |
+
self.q_proj = nn.Linear(embed_dim, int(embed_dim / self.cross_attention_reduce_factor), bias=bias)
|
106 |
+
self.out_proj = nn.Linear(int(embed_dim / self.cross_attention_reduce_factor),embed_dim, bias=bias)
|
107 |
+
|
108 |
+
self.embed_dim=int(embed_dim / self.cross_attention_reduce_factor)
|
109 |
+
else:
|
110 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
111 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim , bias=bias)
|
112 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
113 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
hidden_states,
|
118 |
+
key_value_states,
|
119 |
+
past_key_value,
|
120 |
+
attention_mask,
|
121 |
+
layer_head_mask,
|
122 |
+
output_attentions,
|
123 |
+
):
|
124 |
+
"""Input shape: Batch x Time x Channel"""
|
125 |
+
|
126 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
127 |
+
# for the decoder
|
128 |
+
is_cross_attention = key_value_states is not None
|
129 |
+
|
130 |
+
bsz, tgt_len, _ = hidden_states.size()
|
131 |
+
|
132 |
+
# get query proj
|
133 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
134 |
+
# get key, value proj
|
135 |
+
if is_cross_attention and past_key_value is not None:
|
136 |
+
# reuse k,v, cross_attentions
|
137 |
+
key_states = past_key_value[0]
|
138 |
+
value_states = past_key_value[1]
|
139 |
+
elif is_cross_attention:
|
140 |
+
# cross_attentions
|
141 |
+
#print("key_value_states",key_value_states.size())
|
142 |
+
#print("self.k_proj(key_value_states)",self.k_proj(key_value_states).size())
|
143 |
+
|
144 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
145 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
146 |
+
elif past_key_value is not None:
|
147 |
+
# reuse k, v, self_attention
|
148 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
149 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
150 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
151 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
152 |
+
else:
|
153 |
+
# self_attention
|
154 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
155 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
156 |
+
|
157 |
+
if self.is_decoder:
|
158 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
159 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
160 |
+
# key/value_states (first "if" case)
|
161 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
162 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
163 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
164 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
165 |
+
past_key_value = (key_states, value_states)
|
166 |
+
|
167 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
168 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
169 |
+
key_states = key_states.view(*proj_shape)
|
170 |
+
value_states = value_states.view(*proj_shape)
|
171 |
+
|
172 |
+
src_len = key_states.size(1)
|
173 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
174 |
+
|
175 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
176 |
+
raise ValueError(
|
177 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
178 |
+
f" {attn_weights.size()}"
|
179 |
+
)
|
180 |
+
|
181 |
+
if attention_mask is not None:
|
182 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
183 |
+
raise ValueError(
|
184 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
185 |
+
)
|
186 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
187 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
188 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
189 |
+
|
190 |
+
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
|
191 |
+
if attn_weights.dtype == torch.float16:
|
192 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
|
193 |
+
else:
|
194 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
195 |
+
|
196 |
+
if layer_head_mask is not None:
|
197 |
+
if layer_head_mask.size() != (self.num_heads,):
|
198 |
+
raise ValueError(
|
199 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
200 |
+
f" {layer_head_mask.size()}"
|
201 |
+
)
|
202 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
203 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
204 |
+
|
205 |
+
if output_attentions:
|
206 |
+
# this operation is a bit awkward, but it's required to
|
207 |
+
# make sure that attn_weights keeps its gradient.
|
208 |
+
# In order to do so, attn_weights have to be reshaped
|
209 |
+
# twice and have to be reused in the following
|
210 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
211 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
212 |
+
else:
|
213 |
+
attn_weights_reshaped = None
|
214 |
+
|
215 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
216 |
+
|
217 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
218 |
+
|
219 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
220 |
+
raise ValueError(
|
221 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
222 |
+
f" {attn_output.size()}"
|
223 |
+
)
|
224 |
+
|
225 |
+
#print("boraaa self.head_dim",self.head_dim)
|
226 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
227 |
+
|
228 |
+
#print("attn_output bef",attn_output.size())
|
229 |
+
attn_output = attn_output.transpose(1, 2)
|
230 |
+
#print("attn_output",attn_output.size())
|
231 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
232 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
233 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
234 |
+
|
235 |
+
#print("attn_output",attn_output.size())
|
236 |
+
attn_output = self.out_proj(attn_output)
|
237 |
+
|
238 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
239 |
+
|
240 |
+
|
241 |
+
class ThisXGLMDecoderLayer(XGLMDecoderLayer):
|
242 |
+
def __init__(self, config):
|
243 |
+
super().__init__(config)
|
244 |
+
|
245 |
+
if config.add_cross_attention:
|
246 |
+
print("add cross")
|
247 |
+
self.encoder_attn = ThisXGLMAttention(
|
248 |
+
embed_dim=self.embed_dim,
|
249 |
+
num_heads=config.attention_heads,
|
250 |
+
dropout=config.attention_dropout,
|
251 |
+
is_decoder=True,
|
252 |
+
config=config,
|
253 |
+
is_cross_attention=True
|
254 |
+
)
|
255 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
256 |
+
|
257 |
+
class ThisXGLMModel(XGLMModel):
|
258 |
+
|
259 |
+
def __init__(self, config):
|
260 |
+
super().__init__(config)
|
261 |
+
self.layers = nn.ModuleList([ThisXGLMDecoderLayer(config) for _ in range(config.num_layers)])
|
262 |
+
|
263 |
+
class ThisXGLMForCausalLM(XGLMForCausalLM):
|
264 |
+
config_class = ThisXGLMConfig
|
265 |
+
|
266 |
+
def __init__(self, config):
|
267 |
+
super().__init__(config)
|
268 |
+
self.model = ThisXGLMModel(config)
|
269 |
+
|