Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
from PIL import Image | |
import random | |
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL | |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
import torch | |
import os | |
import time | |
import glob | |
# 一時ファイルの保存ディレクトリ | |
TEMP_DIR = "temp_images" | |
# 一時ファイルの保持期間(秒) | |
FILE_RETENTION_PERIOD = 3600 # 1時間 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# 一時ディレクトリの作成 | |
os.makedirs(TEMP_DIR, exist_ok=True) | |
def cleanup_old_files(): | |
"""古い一時ファイルを削除する""" | |
current_time = time.time() | |
pattern = os.path.join(TEMP_DIR, "output_*.png") | |
for file_path in glob.glob(pattern): | |
try: | |
# ファイルの最終更新時刻を取得 | |
file_modified_time = os.path.getmtime(file_path) | |
if current_time - file_modified_time > FILE_RETENTION_PERIOD: | |
os.remove(file_path) | |
except Exception as e: | |
print(f"Error while cleaning up file {file_path}: {e}") | |
pipe = StableDiffusionXLPipeline.from_single_file( | |
"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors", | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
# 古い一時ファイルの削除 | |
cleanup_old_files() | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# 画像生成 | |
output_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# RGBモードで保存 | |
if output_image.mode != 'RGB': | |
output_image = output_image.convert('RGB') | |
# 一時ファイルとして保存 | |
timestamp = int(time.time()) | |
temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png") | |
output_image.save(temp_filename) | |
return temp_filename | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 100%; | |
padding: 0 1rem; | |
} | |
/* プロンプト入力エリアのスタイル */ | |
.prompt-input { | |
min-height: 100px !important; | |
font-size: 16px !important; | |
line-height: 1.5 !important; | |
padding: 12px !important; | |
border-radius: 8px !important; | |
border: 1px solid #e0e0e0 !important; | |
background-color: #ffffff !important; | |
} | |
.prompt-input:focus { | |
border-color: #2196f3 !important; | |
box-shadow: 0 0 0 2px rgba(33, 150, 243, 0.1) !important; | |
} | |
/* ボタンのスタイル */ | |
.generate-button { | |
margin-top: 1rem !important; | |
padding: 12px 24px !important; | |
font-size: 16px !important; | |
font-weight: 600 !important; | |
border-radius: 8px !important; | |
background-color: #2196f3 !important; | |
color: white !important; | |
transition: all 0.3s ease !important; | |
} | |
.generate-button:hover { | |
background-color: #1976d2 !important; | |
transform: translateY(-1px) !important; | |
} | |
/* スマートフォン対応 */ | |
@media (max-width: 768px) { | |
#col-container { | |
padding: 0 0.5rem; | |
} | |
.prompt-input { | |
font-size: 16px !important; | |
} | |
.advanced-settings { | |
margin-top: 1rem; | |
} | |
} | |
/* 結果画像のコンテナ */ | |
#output_image { | |
margin-top: 1rem; | |
border-radius: 8px; | |
overflow: hidden; | |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); | |
} | |
/* アコーディオンのスタイル */ | |
.advanced-settings { | |
margin-top: 2rem; | |
border: 1px solid #e0e0e0; | |
border-radius: 8px; | |
overflow: hidden; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# Text-to-Image Demo | |
Using [Noob SDXL beta model](https://huggingface.co/Laxhar) to generate amazing images! | |
""") | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="What would you like to create?", | |
elem_classes="prompt-input", | |
lines=3, | |
placeholder="Describe the image you want to generate. Be specific about details, style, and atmosphere.\n\nExample: 'A serene mountain landscape at sunset, with snow-capped peaks and a clear lake reflection, painted in watercolor style'", | |
show_label=True, | |
) | |
run_button = gr.Button( | |
"✨ Generate Image", | |
elem_classes="generate-button", | |
variant="primary", | |
scale=1, | |
size="lg" | |
) | |
result = gr.Image( | |
label="Generated Image", | |
show_label=True, | |
type="filepath", | |
elem_id="output_image" | |
) | |
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
lines=2, | |
placeholder="Specify what you don't want in the image. Example: nsfw, low quality, blur, etc.", | |
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize seed", | |
value=True, | |
info="Generate different results each time" | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.1, | |
value=7, | |
info="Controls how closely the image follows the prompt" | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of Steps", | |
minimum=1, | |
maximum=28, | |
step=1, | |
value=28, | |
info="More steps = higher quality but slower generation" | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result] | |
) | |
# 起動時に古いファイルを削除 | |
cleanup_old_files() | |
demo.queue().launch() |