File size: 4,165 Bytes
501ff66
1650677
 
501ff66
 
1650677
501ff66
 
 
1650677
 
 
501ff66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650677
501ff66
 
1650677
 
501ff66
 
 
 
 
 
1650677
 
 
 
 
501ff66
1650677
 
 
 
 
 
501ff66
1650677
 
501ff66
1650677
 
 
 
 
501ff66
1650677
 
 
 
 
501ff66
 
 
 
 
 
 
1650677
 
 
 
 
 
 
 
 
501ff66
1650677
 
501ff66
1650677
501ff66
1650677
 
 
 
501ff66
1650677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501ff66
1650677
 
 
 
 
 
 
501ff66
1650677
 
 
 
 
 
501ff66
1650677
501ff66
1650677
 
 
 
 
501ff66
1650677
501ff66
1650677
 
501ff66
1650677
501ff66
 
1650677
 
501ff66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import cv2
import torch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

#pipe = StableDiffusionXLPipeline.from_pretrained(
#    "yodayo-ai/holodayo-xl-2.1",
#    vae=vae,
#    torch_dtype=torch.float16,
#)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "yodayo-ai/clandestine-xl-1.0", 
    torch_dtype=torch.float16, 
    use_safetensors=True,
    custom_pipeline="lpw_stable_diffusion_xl",
    add_watermarker=False #,
    #variant="fp16"
)

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

    
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    output_image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    return output_image


css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # Text-to-Image Demo
        using [clandestine XL 1.0](https://huggingface.co/yodayo-ai/clandestine-xl-1.0)
        """)
        #yodayo-ai/clandestine-xl-1.0 
        #yodayo-ai/holodayo-xl-2.1
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(#lambda x: None, inputs=None, outputs=result).then(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()