Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
from PIL import Image | |
import random | |
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL | |
import cv2 | |
import torch | |
import os | |
import time | |
import glob | |
from diffusers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
HeunDiscreteScheduler, | |
KDPM2DiscreteScheduler, | |
KDPM2AncestralDiscreteScheduler, | |
LMSDiscreteScheduler, | |
UniPCMultistepScheduler, | |
) | |
# 一時ファイルの管理設定 | |
TEMP_DIR = "temp_images" | |
FILE_RETENTION_PERIOD = 3600 # 1時間 | |
os.makedirs(TEMP_DIR, exist_ok=True) | |
def cleanup_old_files(): | |
"""古い一時ファイルを削除する""" | |
current_time = time.time() | |
pattern = os.path.join(TEMP_DIR, "output_*.png") | |
for file_path in glob.glob(pattern): | |
try: | |
file_modified_time = os.path.getmtime(file_path) | |
if current_time - file_modified_time > FILE_RETENTION_PERIOD: | |
os.remove(file_path) | |
except Exception as e: | |
print(f"Error while cleaning up file {file_path}: {e}") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
pipe = StableDiffusionXLPipeline.from_single_file( | |
"https://huggingface.co/bluepen5805/illustrious_pencil-XL/illustrious_pencil-XL-v2.0.0.safetensors", | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name): | |
# 古い一時ファイルの削除 | |
cleanup_old_files() | |
# サンプラーの設定 | |
if sampler_name == "DDIM": | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "DPMSolverMultistep": | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "Euler": | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "EulerAncestral": | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "Heun": | |
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "KDPM2": | |
pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "KDPM2Ancestral": | |
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "LMS": | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "UniPC": | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
else: | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
output_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# RGBモードで保存 | |
if output_image.mode != 'RGB': | |
output_image = output_image.convert('RGB') | |
# 一時ファイルとして保存 | |
timestamp = int(time.time()) | |
temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png") | |
output_image.save(temp_filename) | |
return temp_filename | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
Text-to-Image Demo | |
using [illustrious_pencil-XL](https://huggingface.co/bluepen5805/illustrious_pencil-XL) | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image( | |
label="Result", | |
show_label=False, | |
type="filepath", # filepathに変更 | |
elem_id="output_image" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
sampler_name = gr.Dropdown( | |
label="Sampler", | |
choices=["DDIM", "DPMSolverMultistep", "Euler", "EulerAncestral", "Heun", "KDPM2", "KDPM2Ancestral", "LMS", "UniPC"], | |
value="EulerAncestral", | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.1, | |
value=4, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=28, | |
step=1, | |
value=28, | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name], | |
outputs=[result] | |
) | |
# 起動時に古いファイルを削除 | |
cleanup_old_files() | |
demo.queue().launch() |