Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,715 Bytes
062809f ab0ca15 062809f ab0ca15 062809f ab0ca15 451bce5 ab0ca15 1009376 451bce5 ab0ca15 451bce5 062809f 451bce5 ab0ca15 062809f a5c27c2 062809f ab0ca15 062809f 1009376 451bce5 1009376 062809f ab0ca15 062809f ab0ca15 062809f ab0ca15 451bce5 ab0ca15 062809f ab0ca15 062809f 451bce5 ab0ca15 062809f ab0ca15 aeeb1c2 451bce5 aeeb1c2 062809f ab0ca15 062809f ab0ca15 1009376 ab0ca15 451bce5 ab0ca15 451bce5 ab0ca15 062809f ab0ca15 062809f ab0ca15 062809f ab0ca15 062809f ab0ca15 451bce5 ab0ca15 1009376 062809f ab0ca15 451bce5 062809f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
import cv2
import torch
import os
import time
import glob
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
UniPCMultistepScheduler,
)
# 一時ファイルの管理設定
TEMP_DIR = "temp_images"
FILE_RETENTION_PERIOD = 3600 # 1時間
os.makedirs(TEMP_DIR, exist_ok=True)
def cleanup_old_files():
"""古い一時ファイルを削除する"""
current_time = time.time()
pattern = os.path.join(TEMP_DIR, "output_*.png")
for file_path in glob.glob(pattern):
try:
file_modified_time = os.path.getmtime(file_path)
if current_time - file_modified_time > FILE_RETENTION_PERIOD:
os.remove(file_path)
except Exception as e:
print(f"Error while cleaning up file {file_path}: {e}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/bluepen5805/illustrious_pencil-XL/illustrious_pencil-XL-v2.0.0.safetensors",
use_safetensors=True,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name):
# 古い一時ファイルの削除
cleanup_old_files()
# サンプラーの設定
if sampler_name == "DDIM":
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "DPMSolverMultistep":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "EulerAncestral":
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "Heun":
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "KDPM2":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "KDPM2Ancestral":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "LMS":
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "UniPC":
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
else:
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# RGBモードで保存
if output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
# 一時ファイルとして保存
timestamp = int(time.time())
temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png")
output_image.save(temp_filename)
return temp_filename
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
Text-to-Image Demo
using [illustrious_pencil-XL](https://huggingface.co/bluepen5805/illustrious_pencil-XL)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(
label="Result",
show_label=False,
type="filepath", # filepathに変更
elem_id="output_image"
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
sampler_name = gr.Dropdown(
label="Sampler",
choices=["DDIM", "DPMSolverMultistep", "Euler", "EulerAncestral", "Heun", "KDPM2", "KDPM2Ancestral", "LMS", "UniPC"],
value="EulerAncestral",
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=4,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name],
outputs=[result]
)
# 起動時に古いファイルを削除
cleanup_old_files()
demo.queue().launch() |