Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
#Lisence: Apache 2.0
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
@@ -12,10 +11,9 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
12 |
MAX_IMAGE_SIZE = 1216
|
13 |
|
14 |
#pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
15 |
-
#pipe = pipe.to("cuda")
|
16 |
-
|
17 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
18 |
-
"yodayo-ai/
|
|
|
19 |
torch_dtype=torch.float16,
|
20 |
use_safetensors=True,
|
21 |
custom_pipeline="lpw_stable_diffusion_xl",
|
@@ -36,7 +34,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
36 |
generator = torch.Generator().manual_seed(seed)
|
37 |
|
38 |
image = pipe(
|
39 |
-
prompt = prompt,
|
40 |
negative_prompt = negative_prompt,
|
41 |
guidance_scale = guidance_scale,
|
42 |
num_inference_steps = num_inference_steps,
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
11 |
MAX_IMAGE_SIZE = 1216
|
12 |
|
13 |
#pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
|
|
|
|
14 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
15 |
+
"yodayo-ai/kivotos-xl-2.0",
|
16 |
+
#"yodayo-ai/holodayo-xl-2.1",
|
17 |
torch_dtype=torch.float16,
|
18 |
use_safetensors=True,
|
19 |
custom_pipeline="lpw_stable_diffusion_xl",
|
|
|
34 |
generator = torch.Generator().manual_seed(seed)
|
35 |
|
36 |
image = pipe(
|
37 |
+
prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres",
|
38 |
negative_prompt = negative_prompt,
|
39 |
guidance_scale = guidance_scale,
|
40 |
num_inference_steps = num_inference_steps,
|