|
import gradio as gr |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
|
|
|
|
model_path = f"GhylB/Sentiment_Analysis_DistilBERT" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
config = AutoConfig.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
|
|
def sentiment_analysis(text): |
|
text = preprocess(text) |
|
|
|
|
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores_ = output[0][0].detach().numpy() |
|
scores_ = softmax(scores_) |
|
|
|
|
|
labels = ['Negative', 'Neutral', 'Positive'] |
|
scores = {l: float(s) for (l, s) in zip(labels, scores_)} |
|
|
|
return scores |
|
|
|
|
|
demo = gr.Interface( |
|
fn=sentiment_analysis, |
|
inputs=gr.Textbox(placeholder="Copy and paste/Write a tweet here..."), |
|
outputs="text", |
|
interpretation="default", |
|
examples=[["What's up with the vaccine"], |
|
["Covid cases are increasing fast!"], |
|
["Covid has been invented by Mavis"], |
|
["I'm going to party this weekend"], |
|
["Covid is hoax"]], |
|
title="Tutorial : Sentiment Analysis App", |
|
description="This Application assesses if a twitter post relating to vaccinations is positive, neutral, or negative.", ) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |
|
|