APP
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification
|
3 |
+
from transformers import AutoTokenizer, AutoConfig
|
4 |
+
import numpy as np
|
5 |
+
from scipy.special import softmax
|
6 |
+
|
7 |
+
# Setup
|
8 |
+
model_path = f"GhylB/Sentiment_Analysis_DistilBERT"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
config = AutoConfig.from_pretrained(model_path)
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
13 |
+
|
14 |
+
# Functions
|
15 |
+
|
16 |
+
# Preprocess text (username and link placeholders)
|
17 |
+
|
18 |
+
|
19 |
+
def preprocess(text):
|
20 |
+
new_text = []
|
21 |
+
for t in text.split(" "):
|
22 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
23 |
+
t = 'http' if t.startswith('http') else t
|
24 |
+
new_text.append(t)
|
25 |
+
return " ".join(new_text)
|
26 |
+
|
27 |
+
|
28 |
+
def sentiment_analysis(text):
|
29 |
+
text = preprocess(text)
|
30 |
+
|
31 |
+
# PyTorch-based models
|
32 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
33 |
+
output = model(**encoded_input)
|
34 |
+
scores_ = output[0][0].detach().numpy()
|
35 |
+
scores_ = softmax(scores_)
|
36 |
+
|
37 |
+
# Format output dict of scores
|
38 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
39 |
+
scores = {l: float(s) for (l, s) in zip(labels, scores_)}
|
40 |
+
|
41 |
+
return scores
|
42 |
+
|
43 |
+
|
44 |
+
demo = gr.Interface(
|
45 |
+
fn=sentiment_analysis,
|
46 |
+
inputs=gr.Textbox(placeholder="Copy and paste/Write a tweet here..."),
|
47 |
+
outputs="text",
|
48 |
+
interpretation="default",
|
49 |
+
examples=[["What's up with the vaccine"],
|
50 |
+
["Covid cases are increasing fast!"],
|
51 |
+
["Covid has been invented by Mavis"],
|
52 |
+
["I'm going to party this weekend"],
|
53 |
+
["Covid is hoax"]],
|
54 |
+
title="Tutorial : Sentiment Analysis App",
|
55 |
+
description="This Application assesses if a twitter post relating to vaccinations is positive, neutral, or negative.", )
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
demo.launch(server_name="0.0.0.0", server_port=7860) # 8080
|