Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
from PIL import Image | |
# Check for GPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define the Generator architecture | |
class Generator(nn.Module): | |
def __init__(self, latent_dim=100, img_channels=3, feature_dim=64): | |
super(Generator, self).__init__() | |
self.latent_dim = latent_dim | |
self.model = nn.Sequential( | |
nn.ConvTranspose2d(latent_dim, feature_dim * 8, 4, 1, 0, bias=False), | |
nn.BatchNorm2d(feature_dim * 8), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_dim * 8, feature_dim * 4, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(feature_dim * 4), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_dim * 4, feature_dim * 2, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(feature_dim * 2), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_dim * 2, feature_dim, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(feature_dim), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_dim, img_channels, 4, 2, 1, bias=False), | |
nn.Tanh() | |
) | |
def forward(self, z): | |
return self.model(z) | |
def generate_latent_space(self, batch_size): | |
return torch.randn(batch_size, self.latent_dim, 1, 1, device=device) | |
# Instantiate the generator and load pre-trained weights | |
latent_dim = 100 | |
generator = Generator(latent_dim=latent_dim) | |
# Make sure you have uploaded your pre-trained model file "generator.pth" to your Space | |
generator.load_state_dict(torch.load("generator.pth", map_location=device)) | |
generator.to(device) | |
generator.eval() | |
# Function to generate a face image | |
def generate_face(): | |
with torch.no_grad(): | |
# Generate a random latent vector and produce an image | |
z = generator.generate_latent_space(1) | |
generated_image = generator(z) | |
generated_image = generated_image.cpu().squeeze(0) | |
# Denormalize the image (from [-1, 1] to [0, 1]) | |
generated_image = generated_image * 0.5 + 0.5 | |
# Convert the tensor to a PIL Image | |
to_pil = transforms.ToPILImage() | |
image = to_pil(generated_image) | |
return image | |
# Set up the Gradio interface | |
demo = gr.Interface( | |
fn=generate_face, | |
inputs=[], # No inputs β each button press generates a new image | |
outputs="image", | |
title="CelebA GAN Face Generator", | |
description="Generates a face image using a pre-trained GAN on the CelebA dataset.", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |