face_generation / app.py
FagerholmEmil
No changes
e4f1bae
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
# Check for GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define the Generator architecture
class Generator(nn.Module):
def __init__(self, latent_dim=100, img_channels=3, feature_dim=64):
super(Generator, self).__init__()
self.latent_dim = latent_dim
self.model = nn.Sequential(
nn.ConvTranspose2d(latent_dim, feature_dim * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(feature_dim * 8),
nn.ReLU(True),
nn.ConvTranspose2d(feature_dim * 8, feature_dim * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(feature_dim * 4),
nn.ReLU(True),
nn.ConvTranspose2d(feature_dim * 4, feature_dim * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(feature_dim * 2),
nn.ReLU(True),
nn.ConvTranspose2d(feature_dim * 2, feature_dim, 4, 2, 1, bias=False),
nn.BatchNorm2d(feature_dim),
nn.ReLU(True),
nn.ConvTranspose2d(feature_dim, img_channels, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, z):
return self.model(z)
def generate_latent_space(self, batch_size):
return torch.randn(batch_size, self.latent_dim, 1, 1, device=device)
# Instantiate the generator and load pre-trained weights
latent_dim = 100
generator = Generator(latent_dim=latent_dim)
# Make sure you have uploaded your pre-trained model file "generator.pth" to your Space
generator.load_state_dict(torch.load("generator.pth", map_location=device))
generator.to(device)
generator.eval()
# Function to generate a face image
def generate_face():
with torch.no_grad():
# Generate a random latent vector and produce an image
z = generator.generate_latent_space(1)
generated_image = generator(z)
generated_image = generated_image.cpu().squeeze(0)
# Denormalize the image (from [-1, 1] to [0, 1])
generated_image = generated_image * 0.5 + 0.5
# Convert the tensor to a PIL Image
to_pil = transforms.ToPILImage()
image = to_pil(generated_image)
return image
# Set up the Gradio interface
demo = gr.Interface(
fn=generate_face,
inputs=[], # No inputs – each button press generates a new image
outputs="image",
title="CelebA GAN Face Generator",
description="Generates a face image using a pre-trained GAN on the CelebA dataset.",
)
if __name__ == "__main__":
demo.launch()