FagerholmEmil commited on
Commit
e4f1bae
·
1 Parent(s): 0bad298

No changes

Browse files
Files changed (3) hide show
  1. app.py +70 -0
  2. generator.pth +3 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import torch.nn as nn
4
+ import torchvision.transforms as transforms
5
+ from PIL import Image
6
+
7
+ # Check for GPU
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+
10
+ # Define the Generator architecture
11
+ class Generator(nn.Module):
12
+ def __init__(self, latent_dim=100, img_channels=3, feature_dim=64):
13
+ super(Generator, self).__init__()
14
+ self.latent_dim = latent_dim
15
+ self.model = nn.Sequential(
16
+ nn.ConvTranspose2d(latent_dim, feature_dim * 8, 4, 1, 0, bias=False),
17
+ nn.BatchNorm2d(feature_dim * 8),
18
+ nn.ReLU(True),
19
+ nn.ConvTranspose2d(feature_dim * 8, feature_dim * 4, 4, 2, 1, bias=False),
20
+ nn.BatchNorm2d(feature_dim * 4),
21
+ nn.ReLU(True),
22
+ nn.ConvTranspose2d(feature_dim * 4, feature_dim * 2, 4, 2, 1, bias=False),
23
+ nn.BatchNorm2d(feature_dim * 2),
24
+ nn.ReLU(True),
25
+ nn.ConvTranspose2d(feature_dim * 2, feature_dim, 4, 2, 1, bias=False),
26
+ nn.BatchNorm2d(feature_dim),
27
+ nn.ReLU(True),
28
+ nn.ConvTranspose2d(feature_dim, img_channels, 4, 2, 1, bias=False),
29
+ nn.Tanh()
30
+ )
31
+
32
+ def forward(self, z):
33
+ return self.model(z)
34
+
35
+ def generate_latent_space(self, batch_size):
36
+ return torch.randn(batch_size, self.latent_dim, 1, 1, device=device)
37
+
38
+ # Instantiate the generator and load pre-trained weights
39
+ latent_dim = 100
40
+ generator = Generator(latent_dim=latent_dim)
41
+ # Make sure you have uploaded your pre-trained model file "generator.pth" to your Space
42
+ generator.load_state_dict(torch.load("generator.pth", map_location=device))
43
+ generator.to(device)
44
+ generator.eval()
45
+
46
+ # Function to generate a face image
47
+ def generate_face():
48
+ with torch.no_grad():
49
+ # Generate a random latent vector and produce an image
50
+ z = generator.generate_latent_space(1)
51
+ generated_image = generator(z)
52
+ generated_image = generated_image.cpu().squeeze(0)
53
+ # Denormalize the image (from [-1, 1] to [0, 1])
54
+ generated_image = generated_image * 0.5 + 0.5
55
+ # Convert the tensor to a PIL Image
56
+ to_pil = transforms.ToPILImage()
57
+ image = to_pil(generated_image)
58
+ return image
59
+
60
+ # Set up the Gradio interface
61
+ demo = gr.Interface(
62
+ fn=generate_face,
63
+ inputs=[], # No inputs – each button press generates a new image
64
+ outputs="image",
65
+ title="CelebA GAN Face Generator",
66
+ description="Generates a face image using a pre-trained GAN on the CelebA dataset.",
67
+ )
68
+
69
+ if __name__ == "__main__":
70
+ demo.launch()
generator.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3476e418d46809c315cca43789616e1a45ddef3351916fc5fa3f15cea259ead
3
+ size 14322821
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ torchvision
3
+ gradio