File size: 87,388 Bytes
7ef93e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
import importlib
import inspect
import math
from pathlib import Path
import re
from collections import defaultdict
from typing import List, Optional, Union
import cv2
import time
import k_diffusion
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .external_k_diffusion import CompVisDenoiser, CompVisVDenoiser
#from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
from torch import einsum
from torch.autograd.function import Function

from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
from safetensors.torch import load_file
from diffusers import ControlNetModel
from PIL import Image
import torchvision.transforms as transforms
from diffusers.models import AutoencoderKL, ImageProjection
from .ip_adapter import IPAdapterMixin
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
import gc
from .t2i_adapter import preprocessing_t2i_adapter,default_height_width
from .encoder_prompt_modify import encode_prompt_function
from .encode_region_map_function import encode_region_map
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.loaders import LoraLoaderMixin
from diffusers.loaders import TextualInversionLoaderMixin

def get_image_size(image):
    height, width = None, None
    if isinstance(image, Image.Image):
        return image.size  
    elif isinstance(image, np.ndarray):
        height, width = image.shape[:2]
        return (width, height)  
    elif torch.is_tensor(image):
        #RGB image
        if len(image.shape) == 3:
            _, height, width = image.shape
        else:
            height, width = image.shape
        return (width, height) 
    else:
        raise TypeError("The image must be an instance of PIL.Image, numpy.ndarray, or torch.Tensor.")


def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")

# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


class ModelWrapper:
    def __init__(self, model, alphas_cumprod):
        self.model = model
        self.alphas_cumprod = alphas_cumprod

    def apply_model(self, *args, **kwargs):
        if len(args) == 3:
            encoder_hidden_states = args[-1]
            args = args[:2]
        if kwargs.get("cond", None) is not None:
            encoder_hidden_states = kwargs.pop("cond")
        return self.model(
            *args, encoder_hidden_states=encoder_hidden_states, **kwargs
        ).sample


class StableDiffusionPipeline(IPAdapterMixin,DiffusionPipeline,StableDiffusionMixin,LoraLoaderMixin,TextualInversionLoaderMixin):

    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae,
        text_encoder,
        tokenizer,
        unet,
        scheduler,
        feature_extractor,
        image_encoder = None,
    ):
        super().__init__()

        # get correct sigmas from LMS
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.controlnet = None
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
        self.setup_unet(self.unet)
        #self.setup_text_encoder()

    '''def setup_text_encoder(self, n=1, new_encoder=None):
        if new_encoder is not None:
            self.text_encoder = new_encoder

        self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder,n)'''
        #self.prompt_parser.CLIP_stop_at_last_layers = n

    def setup_unet(self, unet):
        unet = unet.to(self.device)
        model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
        if self.scheduler.config.prediction_type == "v_prediction":
            self.k_diffusion_model = CompVisVDenoiser(model)
        else:
            self.k_diffusion_model = CompVisDenoiser(model)

    def get_scheduler(self, scheduler_type: str):
        library = importlib.import_module("k_diffusion")
        sampling = getattr(library, "sampling")
        return getattr(sampling, scheduler_type)

    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds


    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )

            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
                single_negative_image_embeds = torch.stack(
                    [single_negative_image_embeds] * num_images_per_prompt, dim=0
                )

                if do_classifier_free_guidance:
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                    single_image_embeds = single_image_embeds.to(device)

                image_embeds.append(single_image_embeds)
        else:
            repeat_dims = [1]
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    single_image_embeds = single_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                    )
                    single_negative_image_embeds = single_negative_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
                    )
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                else:
                    single_image_embeds = single_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                    )
                image_embeds.append(single_image_embeds)

        return image_embeds

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
                `attention_head_dim` must be a multiple of `slice_size`.
        """
        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = self.unet.config.attention_head_dim // 2
        self.unet.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        for cpu_offloaded_model in [
            self.unet,
            self.text_encoder,
            self.vae,
            self.safety_checker,
        ]:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def decode_latents(self, latents):
        latents = latents.to(self.device, dtype=self.vae.dtype)
        #latents = 1 / 0.18215 * latents
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image


    def _default_height_width(self, height, width, image):
        if isinstance(image, list):
            image = image[0]

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[3]

            height = (height // 8) * 8  # round down to nearest multiple of 8

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[2]

            width = (width // 8) * 8  # round down to nearest multiple of 8

        return height, width

    def check_inputs(self, prompt, height, width, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if (callback_steps is None) or (
            callback_steps is not None
            and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    @property
    def do_classifier_free_guidance(self):
        return self._do_classifier_free_guidance and self.unet.config.time_cond_proj_dim is None

    def setup_controlnet(self,controlnet):
        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)
        self.register_modules(
            controlnet=controlnet,
        )

    def preprocess_controlnet(self,controlnet_conditioning_scale,control_guidance_start,control_guidance_end,image,width,height,num_inference_steps,batch_size,num_images_per_prompt):
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )
        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = False or global_pool_conditions

         # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            image = self.prepare_image(
                image=image,
                width=width,
                height=height,
                batch_size=batch_size,
                num_images_per_prompt=num_images_per_prompt,
                device=self._execution_device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
            height, width = image.shape[-2:]
        elif isinstance(controlnet, MultiControlNetModel):
            images = []

            for image_ in image:
                image_ = self.prepare_image(
                    image=image_,
                    width=width,
                    height=height,
                    batch_size=batch_size,
                    num_images_per_prompt=num_images_per_prompt,
                    device=self._execution_device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                images.append(image_)

            image = images
            height, width = image[0].shape[-2:]
        else:
            assert False

        # 7.2 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(num_inference_steps):
            keeps = [
                1.0 - float(i / num_inference_steps < s or (i + 1) / num_inference_steps > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
        return image,controlnet_keep,guess_mode,controlnet_conditioning_scale



    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor)
        if latents is None:
            if device.type == "mps":
                # randn does not work reproducibly on mps
                latents = torch.randn(
                    shape, generator=generator, device="cpu", dtype=dtype
                ).to(device)
            else:
                latents = torch.randn(
                    shape, generator=generator, device=device, dtype=dtype
                )
        else:
            # if latents.shape != shape:
            #     raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        return latents

    def preprocess(self, image):
        if isinstance(image, torch.Tensor):
            return image
        elif isinstance(image, PIL.Image.Image):
            image = [image]

        if isinstance(image[0], PIL.Image.Image):
            w, h = image[0].size
            w, h = map(lambda x: x - x % 8, (w, h))  # resize to integer multiple of 8

            image = [
                np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
                    None, :
                ]
                for i in image
            ]
            image = np.concatenate(image, axis=0)
            image = np.array(image).astype(np.float32) / 255.0
            image = image.transpose(0, 3, 1, 2)
            image = 2.0 * image - 1.0
            image = torch.from_numpy(image)
        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, dim=0)
        return image

    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        #image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image
    
    def numpy_to_pil(self,images):
        r"""
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        #images = (images * 255).round().astype("uint8")
        images = np.clip((images * 255).round(), 0, 255).astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    def latent_to_image(self,latent,output_type):
        image = self.decode_latents(latent)
        if output_type == "pil":
            image = self.numpy_to_pil(image)
        if len(image) > 1:
            return image
        return image[0]


    @torch.no_grad()
    def img2img(
        self,
        prompt: Union[str, List[str]],
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        generator: Optional[torch.Generator] = None,
        image: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        latents=None,
        strength=1.0,
        region_map_state=None,
        sampler_name="",
        sampler_opt={},
        start_time=-1,
        timeout=180,
        scale_ratio=8.0,
        latent_processing = 0,
        weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
        upscale=False,
        upscale_x: float = 2.0,
        upscale_method: str = "bicubic",
        upscale_antialias: bool = False,
        upscale_denoising_strength: int = 0.7,
        width = None,
        height = None,
        seed = 0,
        sampler_name_hires="",
        sampler_opt_hires= {},
        latent_upscale_processing = False,
        ip_adapter_image = None,
        control_img = None,
        controlnet_conditioning_scale = None,
        control_guidance_start = None,
        control_guidance_end = None,
        image_t2i_adapter : Optional[PipelineImageInput] = None,
        adapter_conditioning_scale: Union[float, List[float]] = 1.0,
        adapter_conditioning_factor: float = 1.0,
        guidance_rescale: float = 0.0,
        cross_attention_kwargs = None,
        clip_skip = None,
        long_encode = 0,
        num_images_per_prompt = 1,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
    ):
        if isinstance(sampler_name, str):
            sampler = self.get_scheduler(sampler_name)
        else:
            sampler = sampler_name
        if height is None:
            _,height = get_image_size(image)
            height = int((height // 8)*8) 
        if width is None:
            width,_ = get_image_size(image)
            width = int((width // 8)*8)  

        if image_t2i_adapter is not None:
            height, width = default_height_width(self,height, width, image_t2i_adapter)
        if image is not None:
            image = self.preprocess(image)
            image = image.to(self.vae.device, dtype=self.vae.dtype)

            init_latents = self.vae.encode(image).latent_dist.sample(generator)
            latents = 0.18215 * init_latents

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        latents = latents.to(device, dtype=self.unet.dtype)
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.

        lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
        '''if guidance_scale <= 1.0:
            raise ValueError("has to use guidance_scale")'''
        # 3. Encode input prompt

        text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
            self,
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            lora_scale = lora_scale,
            clip_skip = clip_skip,
            long_encode = long_encode,
        )

        if self.do_classifier_free_guidance:
            text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])

        #text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
        text_embeddings = text_embeddings.to(self.unet.dtype)

        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
        t_start = max(num_inference_steps - init_timestep, 0)

        sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
            text_embeddings.device, dtype=text_embeddings.dtype
        )

        sigma_sched = sigmas[t_start:]

        noise = randn_tensor(
            latents.shape,
            generator=generator,
            device=device,
            dtype=text_embeddings.dtype,
        )
        latents = latents.to(device)
        latents = latents + noise * (sigma_sched[0]**2 + 1) ** 0.5
        #latents = latents + noise * sigma_sched[0] #Nearly
        steps_denoising = len(sigma_sched)
        # 5. Prepare latent variables
        self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
        self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
            latents.device
        )

        region_state = encode_region_map(
            self,
            region_map_state,
            width = width,
            height = height,
            num_images_per_prompt = num_images_per_prompt,
            text_ids=text_input_ids,
        )
        if cross_attention_kwargs is None:
            cross_attention_kwargs ={}

        controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale 
        control_guidance_start_copy =  control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start 
        control_guidance_end_copy =  control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end 
        guess_mode = False

        if self.controlnet is not None:
            img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,len(sigma_sched),batch_size,num_images_per_prompt)
            #print(len(controlnet_keep))

            #controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
        #sp_control = 1

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )
        #if controlnet_img is not None:
            #controlnet_img_processing = controlnet_img.convert("RGB")
            #transform = transforms.Compose([transforms.PILToTensor()])
            #controlnet_img_processing = transform(controlnet_img)
            #controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
            #controlnet_img = torch.from_numpy(controlnet_img).half()
            #controlnet_img = controlnet_img.unsqueeze(0)
            #controlnet_img = controlnet_img.repeat_interleave(3, dim=0)
            #controlnet_img=controlnet_img.to(device)
            #controlnet_img = controlnet_img.repeat_interleave(4 // len(controlnet_img), 0)
        if latent_processing == 1:
            latents_process = [self.latent_to_image(latents,output_type)]
        lst_latent_sigma = []
        step_control = -1
        adapter_state = None
        adapter_sp_count = []
        if image_t2i_adapter is not None:
            adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
        def model_fn(x, sigma):
            nonlocal step_control,lst_latent_sigma,adapter_sp_count

            if start_time > 0 and timeout > 0:
                assert (time.time() - start_time) < timeout, "inference process timed out"

            latent_model_input = torch.cat([x] * 2) if self.do_classifier_free_guidance else x
            
            region_prompt = {
                "region_state": region_state,
                "sigma": sigma[0],
                "weight_func": weight_func,
              }
            cross_attention_kwargs["region_prompt"] = region_prompt

            #print(self.k_diffusion_model.sigma_to_t(sigma[0]))

            if latent_model_input.dtype != text_embeddings.dtype:
                latent_model_input = latent_model_input.to(text_embeddings.dtype)
            ukwargs = {}

            down_intrablock_additional_residuals = None
            if adapter_state is not None:
                if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
                    down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
                else:
                    down_intrablock_additional_residuals = None
            sigma_string_t2i = str(sigma.item())
            if sigma_string_t2i not in adapter_sp_count:
                adapter_sp_count.append(sigma_string_t2i)

            if self.controlnet is not None :
                sigma_string = str(sigma.item())
                if sigma_string not in lst_latent_sigma:
                    #sigmas_sp = sigma.detach().clone()
                    step_control+=1
                    lst_latent_sigma.append(sigma_string)

                if isinstance(controlnet_keep[step_control], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
                
                down_block_res_samples = None
                mid_block_res_sample = None
                down_block_res_samples, mid_block_res_sample = self.controlnet(
                        latent_model_input / ((sigma**2 + 1) ** 0.5),
                        self.k_diffusion_model.sigma_to_t(sigma),
                        encoder_hidden_states=text_embeddings,
                        controlnet_cond=img_control,
                        conditioning_scale=cond_scale,
                        guess_mode=guess_mode,
                        return_dict=False,
                    )
                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
                ukwargs ={
                "down_block_additional_residuals": down_block_res_samples,
                "mid_block_additional_residual":mid_block_res_sample,
                }
            
            noise_pred = self.k_diffusion_model(
                latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs = cross_attention_kwargs,down_intrablock_additional_residuals = down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
            )

            
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )

            if guidance_rescale > 0.0:
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
            if latent_processing == 1:
                latents_process.append(self.latent_to_image(noise_pred,output_type))
            # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
            return noise_pred

        sampler_args = self.get_sampler_extra_args_i2i(sigma_sched,len(sigma_sched),sampler_opt,latents,seed, sampler)
        latents = sampler(model_fn, latents, **sampler_args)
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()
        gc.collect()
        if upscale:
            vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
            target_height = int(height * upscale_x // vae_scale_factor  )* 8
            target_width = int(width * upscale_x // vae_scale_factor)*8
            
            latents = torch.nn.functional.interpolate(
                latents,
                size=(
                    int(target_height // vae_scale_factor),
                    int(target_width // vae_scale_factor),
                ),
                mode=upscale_method,
                antialias=upscale_antialias,
            )
            #if controlnet_img is not None:
                #controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
                #controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
            
            #region_map_state = apply_size_sketch(int(target_width),int(target_height),region_map_state)
            latent_reisze= self.img2img(
                prompt=prompt,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                negative_prompt=negative_prompt,
                generator=generator,
                latents=latents,
                strength=upscale_denoising_strength,
                sampler_name=sampler_name_hires,
                sampler_opt=sampler_opt_hires,
                region_map_state=region_map_state,
                latent_processing = latent_upscale_processing,
                width = int(target_width),
                height = int(target_height),
                seed = seed,
                ip_adapter_image = ip_adapter_image,
                control_img = control_img,
                controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
                control_guidance_start = control_guidance_start_copy,
                control_guidance_end = control_guidance_end_copy,
                image_t2i_adapter= image_t2i_adapter,
                adapter_conditioning_scale = adapter_conditioning_scale,
                adapter_conditioning_factor = adapter_conditioning_factor,
                guidance_rescale = guidance_rescale,
                cross_attention_kwargs = cross_attention_kwargs,
                clip_skip = clip_skip,
                long_encode = long_encode,
                num_images_per_prompt = num_images_per_prompt,
            )
            '''if latent_processing == 1:
                latents = latents_process.copy()
                images = []
                for i in latents:
                  images.append(self.decode_latents(i))
                image = []
                if output_type == "pil":
                  for i in images:
                    image.append(self.numpy_to_pil(i))
                image[-1] = latent_reisze
                return image'''
            if latent_processing == 1:
                latents_process= latents_process+latent_reisze
                return latents_process
            torch.cuda.empty_cache()
            gc.collect()
            return latent_reisze

        '''if latent_processing == 1:
            latents = latents_process.copy()
            images = []
            for i in latents:
              images.append(self.decode_latents(i))
            image = []
            # 10. Convert to PIL
            if output_type == "pil":
              for i in images:
                image.append(self.numpy_to_pil(i))
        else:
            image = self.decode_latents(latents)
            # 10. Convert to PIL
            if output_type == "pil":
                image = self.numpy_to_pil(image)'''     
        if latent_processing == 1:
            return latents_process
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()
        gc.collect()
        return [self.latent_to_image(latents,output_type)]

    def get_sigmas(self, steps, params):
        discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
        steps += 1 if discard_next_to_last_sigma else 0

        if params.get("scheduler", None) == "karras":
            sigma_min, sigma_max = (
                self.k_diffusion_model.sigmas[0].item(),
                self.k_diffusion_model.sigmas[-1].item(),
            )
            sigmas = k_diffusion.sampling.get_sigmas_karras(
                n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
            )
        elif params.get("scheduler", None) == "exponential":
            sigma_min, sigma_max = (
                self.k_diffusion_model.sigmas[0].item(),
                self.k_diffusion_model.sigmas[-1].item(),
            )
            sigmas = k_diffusion.sampling.get_sigmas_exponential(
                n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
            )
        elif params.get("scheduler", None) == "polyexponential":
            sigma_min, sigma_max = (
                self.k_diffusion_model.sigmas[0].item(),
                self.k_diffusion_model.sigmas[-1].item(),
            )
            sigmas = k_diffusion.sampling.get_sigmas_polyexponential(
                n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
            )
        else:
            sigmas = self.k_diffusion_model.get_sigmas(steps)

        if discard_next_to_last_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])

        return sigmas

    def create_noise_sampler(self, x, sigmas, p,seed):
        """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""

        from k_diffusion.sampling import BrownianTreeNoiseSampler
        sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
        #current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
        return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed)

    # https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
    def get_sampler_extra_args_t2i(self, sigmas, eta, steps,sampler_opt,latents,seed, func):
        extra_params_kwargs = {}

        if "eta" in inspect.signature(func).parameters:
            extra_params_kwargs["eta"] = eta

        if "sigma_min" in inspect.signature(func).parameters:
            extra_params_kwargs["sigma_min"] = sigmas[0].item()
            extra_params_kwargs["sigma_max"] = sigmas[-1].item()

        if "n" in inspect.signature(func).parameters:
            extra_params_kwargs["n"] = steps
        else:
            extra_params_kwargs["sigmas"] = sigmas
        if sampler_opt.get('brownian_noise', False):
            noise_sampler = self.create_noise_sampler(latents, sigmas, steps,seed)
            extra_params_kwargs['noise_sampler'] = noise_sampler
        if sampler_opt.get('solver_type', None) == 'heun':
            extra_params_kwargs['solver_type'] = 'heun'
        
        return extra_params_kwargs

    # https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
    def get_sampler_extra_args_i2i(self, sigmas,steps,sampler_opt,latents,seed, func):
        extra_params_kwargs = {}

        if "sigma_min" in inspect.signature(func).parameters:
            ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
            extra_params_kwargs["sigma_min"] = sigmas[-2]

        if "sigma_max" in inspect.signature(func).parameters:
            extra_params_kwargs["sigma_max"] = sigmas[0]

        if "n" in inspect.signature(func).parameters:
            extra_params_kwargs["n"] = len(sigmas) - 1

        if "sigma_sched" in inspect.signature(func).parameters:
            extra_params_kwargs["sigma_sched"] = sigmas

        if "sigmas" in inspect.signature(func).parameters:
            extra_params_kwargs["sigmas"] = sigmas
        if sampler_opt.get('brownian_noise', False):
            noise_sampler = self.create_noise_sampler(latents, sigmas, steps,seed)
            extra_params_kwargs['noise_sampler'] = noise_sampler
        if sampler_opt.get('solver_type', None) == 'heun':
            extra_params_kwargs['solver_type'] = 'heun'

        return extra_params_kwargs

    @torch.no_grad()
    def txt2img(
        self,
        prompt: Union[str, List[str]],
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        callback_steps: Optional[int] = 1,
        upscale=False,
        upscale_x: float = 2.0,
        upscale_method: str = "bicubic",
        upscale_antialias: bool = False,
        upscale_denoising_strength: int = 0.7,
        region_map_state=None,
        sampler_name="",
        sampler_opt={},
        start_time=-1,
        timeout=180,
        latent_processing = 0,
        weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
        seed = 0,
        sampler_name_hires= "",
        sampler_opt_hires= {},
        latent_upscale_processing = False,
        ip_adapter_image = None,
        control_img = None,
        controlnet_conditioning_scale = None,
        control_guidance_start = None,
        control_guidance_end = None,
        image_t2i_adapter : Optional[PipelineImageInput] = None,
        adapter_conditioning_scale: Union[float, List[float]] = 1.0,
        adapter_conditioning_factor: float = 1.0,
        guidance_rescale: float = 0.0,
        cross_attention_kwargs = None,
        clip_skip = None,
        long_encode = 0,
        num_images_per_prompt = 1,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
    ):
        height, width = self._default_height_width(height, width, None)
        if isinstance(sampler_name, str):
            sampler = self.get_scheduler(sampler_name)
        else:
            sampler = sampler_name
        # 1. Check inputs. Raise error if not correct
        if image_t2i_adapter is not None:
            height, width = default_height_width(self,height, width, image_t2i_adapter)
            #print(default_height_width(self,height, width, image_t2i_adapter))
        self.check_inputs(prompt, height, width, callback_steps)
        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        '''do_classifier_free_guidance = True
        if guidance_scale <= 1.0:
            raise ValueError("has to use guidance_scale")'''

        lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
        '''if guidance_scale <= 1.0:
            raise ValueError("has to use guidance_scale")'''
        # 3. Encode input prompt

        text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
            self,
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            lora_scale = lora_scale,
            clip_skip = clip_skip,
            long_encode = long_encode,
        )
        if self.do_classifier_free_guidance:
            text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])

        # 3. Encode input prompt
        #text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
        text_embeddings = text_embeddings.to(self.unet.dtype)

        # 4. Prepare timesteps
        sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
            text_embeddings.device, dtype=text_embeddings.dtype
        )

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )
        latents = latents * (sigmas[0]**2 + 1) ** 0.5
        #latents = latents * sigmas[0]#Nearly
        steps_denoising = len(sigmas)
        self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
        self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
            latents.device
        )

        region_state = encode_region_map(
            self,
            region_map_state,
            width = width,
            height = height,
            num_images_per_prompt = num_images_per_prompt,
            text_ids=text_input_ids,
        )
        if cross_attention_kwargs is None:
            cross_attention_kwargs ={}
        controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale 
        control_guidance_start_copy =  control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start 
        control_guidance_end_copy =  control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end 
        guess_mode = False

        if self.controlnet is not None:
            img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,num_inference_steps,batch_size,num_images_per_prompt)
            #print(len(controlnet_keep))

            #controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
        #sp_control = 1
        

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )
        #if controlnet_img is not None:
            #controlnet_img_processing = controlnet_img.convert("RGB")
            #transform = transforms.Compose([transforms.PILToTensor()])
            #controlnet_img_processing = transform(controlnet_img)
            #controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
        if latent_processing == 1:
            latents_process = [self.latent_to_image(latents,output_type)]
        #sp_find_new = None
        lst_latent_sigma = []
        step_control = -1
        adapter_state = None
        adapter_sp_count = []
        if image_t2i_adapter is not None:
            adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
        def model_fn(x, sigma):
            nonlocal step_control,lst_latent_sigma,adapter_sp_count

            if start_time > 0 and timeout > 0:
                assert (time.time() - start_time) < timeout, "inference process timed out"

            latent_model_input = torch.cat([x] * 2) if self.do_classifier_free_guidance else x
            region_prompt = {
                "region_state": region_state,
                "sigma": sigma[0],
                "weight_func": weight_func,
              }
            cross_attention_kwargs["region_prompt"] = region_prompt

            #print(self.k_diffusion_model.sigma_to_t(sigma[0]))

            if latent_model_input.dtype != text_embeddings.dtype:
                latent_model_input = latent_model_input.to(text_embeddings.dtype)
            ukwargs = {}

            down_intrablock_additional_residuals = None
            if adapter_state is not None:
                if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
                    down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
                else:
                    down_intrablock_additional_residuals = None
            sigma_string_t2i = str(sigma.item())
            if sigma_string_t2i not in adapter_sp_count:
                adapter_sp_count.append(sigma_string_t2i)

            if self.controlnet is not None :
                sigma_string = str(sigma.item())
                if sigma_string not in lst_latent_sigma:
                    #sigmas_sp = sigma.detach().clone()
                    step_control+=1
                    lst_latent_sigma.append(sigma_string)

                if isinstance(controlnet_keep[step_control], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
                
                down_block_res_samples = None
                mid_block_res_sample = None
                down_block_res_samples, mid_block_res_sample = self.controlnet(
                        latent_model_input / ((sigma**2 + 1) ** 0.5),
                        self.k_diffusion_model.sigma_to_t(sigma),
                        encoder_hidden_states=text_embeddings,
                        controlnet_cond=img_control,
                        conditioning_scale=cond_scale,
                        guess_mode=guess_mode,
                        return_dict=False,
                    )
                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
                ukwargs ={
                "down_block_additional_residuals": down_block_res_samples,
                "mid_block_additional_residual":mid_block_res_sample,
                }

            
            noise_pred = self.k_diffusion_model(
                latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs=cross_attention_kwargs,down_intrablock_additional_residuals=down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
            )

            
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )
            if guidance_rescale > 0.0:
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
            if latent_processing == 1:
                latents_process.append(self.latent_to_image(noise_pred,output_type))
            # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
            return noise_pred
        extra_args = self.get_sampler_extra_args_t2i(
            sigmas, eta, num_inference_steps,sampler_opt,latents,seed, sampler
        )
        latents = sampler(model_fn, latents, **extra_args)
        #latents = latents_process[0]
        #print(len(latents_process))
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()
        gc.collect()
        if upscale:
            vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
            target_height = int(height * upscale_x // vae_scale_factor  )* 8
            target_width = int(width * upscale_x // vae_scale_factor)*8
            latents = torch.nn.functional.interpolate(
                latents,
                size=(
                    int(target_height // vae_scale_factor),
                    int(target_width // vae_scale_factor),
                ),
                mode=upscale_method,
                antialias=upscale_antialias,
            )
            
            #if controlnet_img is not None:
                #controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
                #controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
            latent_reisze= self.img2img(
                prompt=prompt,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                negative_prompt=negative_prompt,
                generator=generator,
                latents=latents,
                strength=upscale_denoising_strength,
                sampler_name=sampler_name_hires,
                sampler_opt=sampler_opt_hires,
                region_map_state = region_map_state,
                latent_processing = latent_upscale_processing,
                width = int(target_width),
                height = int(target_height),
                seed = seed,
                ip_adapter_image = ip_adapter_image,
                control_img = control_img,
                controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
                control_guidance_start = control_guidance_start_copy,
                control_guidance_end = control_guidance_end_copy,
                image_t2i_adapter= image_t2i_adapter,
                adapter_conditioning_scale = adapter_conditioning_scale,
                adapter_conditioning_factor = adapter_conditioning_factor,
                guidance_rescale = guidance_rescale,
                cross_attention_kwargs = cross_attention_kwargs,
                clip_skip = clip_skip,
                long_encode = long_encode,
                num_images_per_prompt = num_images_per_prompt,
            )
            '''if latent_processing == 1:
                latents = latents_process.copy()
                images = []
                for i in latents:
                  images.append(self.decode_latents(i))
                image = []
                if output_type == "pil":
                  for i in images:
                    image.append(self.numpy_to_pil(i))
                image[-1] = latent_reisze
                return image'''
            if latent_processing == 1:
                latents_process= latents_process+latent_reisze
                return latents_process
            torch.cuda.empty_cache()
            gc.collect()
            return latent_reisze

        # 8. Post-processing
        '''if latent_processing == 1:
            latents = latents_process.copy()
            images = []
            for i in latents:
              images.append(self.decode_latents(i))
            image = []
            # 10. Convert to PIL
            if output_type == "pil":
              for i in images:
                image.append(self.numpy_to_pil(i))
        else:
            image = self.decode_latents(latents)
            # 10. Convert to PIL
            if output_type == "pil":
                image = self.numpy_to_pil(image)'''
        if latent_processing == 1:
            return latents_process
        return [self.latent_to_image(latents,output_type)]


    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)

        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents
    
    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        masked_image = masked_image.to(device=device, dtype=dtype)

        if masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = self._encode_vae_image(masked_image, generator=generator)

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
        return mask, masked_image_latents

    '''def get_image_latents(self,batch_size,image,device,dtype,generator):
        image = image.to(device=device, dtype=dtype)

        if image.shape[1] == 4:
            image_latents = image
        else:
            image_latents = self._encode_vae_image(image=image, generator=generator)
        image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
        return image_latents'''

    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

    def add_noise(self,init_latents_proper,noise,sigma):
        if isinstance(sigma, torch.Tensor) and sigma.numel() > 1:
            sigma,_ = sigma.sort(descending=True)
            sigma = sigma[0].item()
        #alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        init_latents_proper = init_latents_proper + sigma * noise
        return init_latents_proper

    def prepare_latents_inpating(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
        image=None,
        sigma=None,
        is_strength_max=True,
        return_noise=False,
        return_image_latents=False,
    ):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if (image is None or sigma is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise sigma has not been provided."
            )

        if return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)

            if image.shape[1] == 4:
                image_latents = image
            else:
                image_latents = self._encode_vae_image(image=image, generator=generator)
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)

        if latents is None:
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
            latents = noise if is_strength_max else self.add_noise(image_latents, noise, sigma)
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * (sigma.item()**2 + 1) ** 0.5 if is_strength_max else latents
            #latents = latents * sigma.item() if is_strength_max else latents #Nearly
        else:
            noise = latents.to(device)
            latents = noise * (sigma.item()**2 + 1) ** 0.5
            #latents = noise * sigma.item() #Nearly

        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs

    @torch.no_grad()
    def inpaiting(
        self,
        prompt: Union[str, List[str]],
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        callback_steps: Optional[int] = 1,
        upscale=False,
        upscale_x: float = 2.0,
        upscale_method: str = "bicubic",
        upscale_antialias: bool = False,
        upscale_denoising_strength: int = 0.7,
        region_map_state=None,
        sampler_name="",
        sampler_opt={},
        start_time=-1,
        timeout=180,
        latent_processing = 0,
        weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
        seed = 0,
        sampler_name_hires= "",
        sampler_opt_hires= {},
        latent_upscale_processing = False,
        ip_adapter_image = None,
        control_img = None,
        controlnet_conditioning_scale = None,
        control_guidance_start = None,
        control_guidance_end = None,
        image_t2i_adapter : Optional[PipelineImageInput] = None,
        adapter_conditioning_scale: Union[float, List[float]] = 1.0,
        adapter_conditioning_factor: float = 1.0,
        guidance_rescale: float = 0.0,
        cross_attention_kwargs = None,
        clip_skip = None,
        long_encode = 0,
        num_images_per_prompt = 1,
        image: Union[torch.Tensor, PIL.Image.Image] = None,
        mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
        masked_image_latents: torch.Tensor = None,
        padding_mask_crop: Optional[int] = None,
        strength: float = 1.0,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
    ):
        height, width = self._default_height_width(height, width, None)
        if isinstance(sampler_name, str):
            sampler = self.get_scheduler(sampler_name)
        else:
            sampler = sampler_name
        # 1. Check inputs. Raise error if not correct
        if image_t2i_adapter is not None:
            height, width = default_height_width(self,height, width, image_t2i_adapter)
            #print(default_height_width(self,height, width, image_t2i_adapter))
        self.check_inputs(prompt, height, width, callback_steps)
        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        '''do_classifier_free_guidance = True
        if guidance_scale <= 1.0:
            raise ValueError("has to use guidance_scale")'''

        lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
        '''if guidance_scale <= 1.0:
            raise ValueError("has to use guidance_scale")'''
        # 3. Encode input prompt

        text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
            self,
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            lora_scale = lora_scale,
            clip_skip = clip_skip,
            long_encode = long_encode,
        )
        if self.do_classifier_free_guidance:
            text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])

        text_embeddings = text_embeddings.to(self.unet.dtype)

        # 4. Prepare timesteps
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
        t_start = max(num_inference_steps - init_timestep, 0)
        sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
            text_embeddings.device, dtype=text_embeddings.dtype
        )
        sigmas = sigmas[t_start:] if strength >= 0 and strength < 1.0 else sigmas
        is_strength_max = strength == 1.0
        
        '''if latents is None:
            noise_inpaiting = randn_tensor((batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8), generator=generator, device=device, dtype=text_embeddings.dtype)
        else:
            noise_inpaiting = latents.to(device)'''


        # 5. Prepare mask, image, 
        if padding_mask_crop is not None:
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
        init_image = init_image.to(dtype=torch.float32)

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4

        image_latents = None
        noise_inpaiting = None

        '''latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_unet,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )'''
        #latents = latents * sigmas[0]

        latents_outputs = self.prepare_latents_inpating(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
            image=init_image,
            sigma=sigmas[0],
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if return_image_latents:
            latents, noise_inpaiting, image_latents = latents_outputs
        else:
            latents, noise_inpaiting = latents_outputs

         # 7. Prepare mask latent variables
        mask_condition = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )

        if masked_image_latents is None:
            masked_image = init_image * (mask_condition < 0.5)
        else:
            masked_image = masked_image_latents

        mask, masked_image_latents = self.prepare_mask_latents(
            mask_condition,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            self.do_classifier_free_guidance,
        )

        # 8. Check that sizes of mask, masked image and latents match
        if num_channels_unet == 9:
            # default case for runwayml/stable-diffusion-inpainting
            num_channels_mask = mask.shape[1]
            num_channels_masked_image = masked_image_latents.shape[1]
            if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
                raise ValueError(
                    f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                    f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                    f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
                    f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
                    " `pipeline.unet` or your `mask_image` or `image` input."
                )
        elif num_channels_unet != 4:
            raise ValueError(
                f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
            )

        steps_denoising = len(sigmas)
        self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
        self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
            latents.device
        )

        region_state = encode_region_map(
            self,
            region_map_state,
            width = width,
            height = height,
            num_images_per_prompt = num_images_per_prompt,
            text_ids=text_input_ids,
        )
        if cross_attention_kwargs is None:
            cross_attention_kwargs ={}
        controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale 
        control_guidance_start_copy =  control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start 
        control_guidance_end_copy =  control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end 
        guess_mode = False

        if self.controlnet is not None:
            img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,num_inference_steps,batch_size,num_images_per_prompt)
            #print(len(controlnet_keep))

            #controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
        #sp_control = 1
        

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )
        #if controlnet_img is not None:
            #controlnet_img_processing = controlnet_img.convert("RGB")
            #transform = transforms.Compose([transforms.PILToTensor()])
            #controlnet_img_processing = transform(controlnet_img)
            #controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
        if latent_processing == 1:
            latents_process = [self.latent_to_image(latents,output_type)]
        #sp_find_new = None
        lst_latent_sigma = []
        step_control = -1
        adapter_state = None
        adapter_sp_count = []
        flag_add_noise_inpaiting = 0
        if image_t2i_adapter is not None:
            adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
        def model_fn(x, sigma):
            nonlocal step_control,lst_latent_sigma,adapter_sp_count,flag_add_noise_inpaiting

            if start_time > 0 and timeout > 0:
                assert (time.time() - start_time) < timeout, "inference process timed out"

            if num_channels_unet == 4 and flag_add_noise_inpaiting:
                init_latents_proper = image_latents
                if self.do_classifier_free_guidance:
                    init_mask, _ = mask.chunk(2)
                else:
                    init_mask = mask

                if sigma.item() > sigmas[-1].item():
                    #indices = torch.where(sigmas == sigma.item())[0]
                    #sigma_next = sigmas[indices+1]
                    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma.item())
                    init_latents_proper = alpha_t * init_latents_proper + sigma_t * noise_inpaiting

                rate_latent_timestep_sigma = (sigma**2 + 1) ** 0.5

                x  = ((1 - init_mask) * init_latents_proper + init_mask * x/ rate_latent_timestep_sigma ) * rate_latent_timestep_sigma

            non_inpainting_latent_model_input = (
                    torch.cat([x] * 2) if self.do_classifier_free_guidance else x
                )

            inpainting_latent_model_input = torch.cat(
                    [non_inpainting_latent_model_input,mask, masked_image_latents], dim=1
            ) if num_channels_unet == 9 else non_inpainting_latent_model_input
            region_prompt = {
                "region_state": region_state,
                "sigma": sigma[0],
                "weight_func": weight_func,
              }
            cross_attention_kwargs["region_prompt"] = region_prompt

            #print(self.k_diffusion_model.sigma_to_t(sigma[0]))

            if non_inpainting_latent_model_input.dtype != text_embeddings.dtype:
                non_inpainting_latent_model_input = non_inpainting_latent_model_input.to(text_embeddings.dtype)

            if inpainting_latent_model_input.dtype != text_embeddings.dtype:
                inpainting_latent_model_input = inpainting_latent_model_input.to(text_embeddings.dtype)
            ukwargs = {}

            down_intrablock_additional_residuals = None
            if adapter_state is not None:
                if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
                    down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
                else:
                    down_intrablock_additional_residuals = None
            sigma_string_t2i = str(sigma.item())
            if sigma_string_t2i not in adapter_sp_count:
                adapter_sp_count.append(sigma_string_t2i)

            if self.controlnet is not None :
                sigma_string = str(sigma.item())
                if sigma_string not in lst_latent_sigma:
                    #sigmas_sp = sigma.detach().clone()
                    step_control+=1
                    lst_latent_sigma.append(sigma_string)

                if isinstance(controlnet_keep[step_control], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
                
                down_block_res_samples = None
                mid_block_res_sample = None
                down_block_res_samples, mid_block_res_sample = self.controlnet(
                        non_inpainting_latent_model_input / ((sigma**2 + 1) ** 0.5),
                        self.k_diffusion_model.sigma_to_t(sigma),
                        encoder_hidden_states=text_embeddings,
                        controlnet_cond=img_control,
                        conditioning_scale=cond_scale,
                        guess_mode=guess_mode,
                        return_dict=False,
                    )
                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
                ukwargs ={
                "down_block_additional_residuals": down_block_res_samples,
                "mid_block_additional_residual":mid_block_res_sample,
                }

            
            noise_pred = self.k_diffusion_model(
                inpainting_latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs=cross_attention_kwargs,down_intrablock_additional_residuals=down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
            )

            
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )
            if guidance_rescale > 0.0:
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
             

            if latent_processing == 1:
                latents_process.append(self.latent_to_image(noise_pred,output_type))
            flag_add_noise_inpaiting = 1
            return noise_pred
        extra_args = self.get_sampler_extra_args_t2i(
            sigmas, eta, num_inference_steps,sampler_opt,latents,seed, sampler
        )
        latents = sampler(model_fn, latents, **extra_args)
        #latents = latents_process[0]
        #print(len(latents_process))
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()
        gc.collect()
        if upscale:
            vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
            target_height = int(height * upscale_x // vae_scale_factor  )* 8
            target_width = int(width * upscale_x // vae_scale_factor)*8
            latents = torch.nn.functional.interpolate(
                latents,
                size=(
                    int(target_height // vae_scale_factor),
                    int(target_width // vae_scale_factor),
                ),
                mode=upscale_method,
                antialias=upscale_antialias,
            )
            
            #if controlnet_img is not None:
                #controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
                #controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
            latent_reisze= self.img2img(
                prompt=prompt,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                negative_prompt=negative_prompt,
                generator=generator,
                latents=latents,
                strength=upscale_denoising_strength,
                sampler_name=sampler_name_hires,
                sampler_opt=sampler_opt_hires,
                region_map_state = region_map_state,
                latent_processing = latent_upscale_processing,
                width = int(target_width),
                height = int(target_height),
                seed = seed,
                ip_adapter_image = ip_adapter_image,
                control_img = control_img,
                controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
                control_guidance_start = control_guidance_start_copy,
                control_guidance_end = control_guidance_end_copy,
                image_t2i_adapter= image_t2i_adapter,
                adapter_conditioning_scale = adapter_conditioning_scale,
                adapter_conditioning_factor = adapter_conditioning_factor,
                guidance_rescale = guidance_rescale,
                cross_attention_kwargs = cross_attention_kwargs,
                clip_skip = clip_skip,
                long_encode = long_encode,
                num_images_per_prompt = num_images_per_prompt,
            )
            '''if latent_processing == 1:
                latents = latents_process.copy()
                images = []
                for i in latents:
                  images.append(self.decode_latents(i))
                image = []
                if output_type == "pil":
                  for i in images:
                    image.append(self.numpy_to_pil(i))
                image[-1] = latent_reisze
                return image'''
            if latent_processing == 1:
                latents_process= latents_process+latent_reisze
                return latents_process
            torch.cuda.empty_cache()
            gc.collect()
            return latent_reisze

        # 8. Post-processing
        '''if latent_processing == 1:
            latents = latents_process.copy()
            images = []
            for i in latents:
              images.append(self.decode_latents(i))
            image = []
            # 10. Convert to PIL
            if output_type == "pil":
              for i in images:
                image.append(self.numpy_to_pil(i))
        else:
            image = self.decode_latents(latents)
            # 10. Convert to PIL
            if output_type == "pil":
                image = self.numpy_to_pil(image)'''
        if latent_processing == 1:
            return latents_process
        return [self.latent_to_image(latents,output_type)]