DuckDB-SQL-Eval / app.py
tdoehmen's picture
show manifest output
11fbe39
raw
history blame
4.66 kB
import gradio as gr
import subprocess
import spaces
import torch
import os
import re
import threading
import queue
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' πŸ€”
def stream_output(process, q):
for line in iter(process.stdout.readline, b''):
q.put(line.decode('utf-8').strip())
process.stdout.close()
@spaces.GPU
def run_evaluation(model_name):
print(zero.device) # <-- 'cuda:0' πŸ€—
results = []
manifest_logs = []
# Use the secret HF token from the Hugging Face space
if "HF_TOKEN" not in os.environ:
return "Error: HF_TOKEN not found in environment variables.", "Error: Cannot start manifest server without HF_TOKEN."
manifest_process = None
log_queue = queue.Queue()
try:
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
manifest_cmd = f"""
cd duckdb-nsql/ &&
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \
--model_type huggingface \
--model_generation_type text-generation \
--model_name_or_path {model_name} \
--fp16 \
--device 0
"""
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True)
threading.Thread(target=stream_output, args=(manifest_process, log_queue), daemon=True).start()
results.append("Started manifest server in background.")
# Wait for the server to initialize (adjust time as needed)
for _ in range(30):
try:
line = log_queue.get(timeout=1)
manifest_logs.append(line)
if "Running on" in line: # Server is ready
break
except queue.Empty:
pass
# Run inference
inference_cmd = f"""
cd duckdb-nsql/ &&
python eval/predict.py \
predict \
eval/data/dev.json \
eval/data/tables.json \
--output-dir output/ \
--stop-tokens ';' \
--overwrite-manifest \
--manifest-client huggingface \
--manifest-connection http://localhost:5000 \
--prompt-format duckdbinstgraniteshort
"""
inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True)
results.append("Inference completed.")
# Extract JSON file path from inference output
json_path_match = re.search(r'(.*\.json)', inference_result.stdout)
if not json_path_match:
raise ValueError("Could not find JSON file path in inference output")
json_file = os.path.basename(json_path_match.group(1))
results.append(f"Generated JSON file: {json_file}")
# Run evaluation
eval_cmd = f"""
cd duckdb-nsql/ &&
python eval/evaluate.py evaluate \
--gold eval/data/dev.json \
--db eval/data/databases/ \
--tables eval/data/tables.json \
--output-dir output/ \
--pred output/{json_file}
"""
eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True)
# Extract and format metrics from eval output
metrics = eval_result.stdout
if metrics:
results.append(f"Evaluation completed:\n{metrics}")
else:
results.append("Evaluation completed, but couldn't get metrics.")
except subprocess.CalledProcessError as e:
results.append(f"Error occurred: {str(e)}")
results.append(f"Command output: {e.output}")
except Exception as e:
results.append(f"An unexpected error occurred: {str(e)}")
finally:
# Terminate the background manifest server
if manifest_process:
manifest_process.terminate()
results.append("Terminated manifest server.")
# Collect any remaining logs
while True:
try:
line = log_queue.get_nowait()
manifest_logs.append(line)
except queue.Empty:
break
return "\n\n".join(results), "\n".join(manifest_logs)
with gr.Blocks() as demo:
gr.Markdown("# DuckDB SQL Evaluation App")
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
start_btn = gr.Button("Start Evaluation")
output = gr.Textbox(label="Evaluation Output", lines=20)
manifest_output = gr.Textbox(label="Manifest Server Logs", lines=20)
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=[output, manifest_output])
demo.launch()