import gradio as gr import subprocess import spaces import torch import os import re import threading import queue zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 def stream_output(process, q): for line in iter(process.stdout.readline, b''): q.put(line.decode('utf-8').strip()) process.stdout.close() @spaces.GPU def run_evaluation(model_name): print(zero.device) # <-- 'cuda:0' 🤗 results = [] manifest_logs = [] # Use the secret HF token from the Hugging Face space if "HF_TOKEN" not in os.environ: return "Error: HF_TOKEN not found in environment variables.", "Error: Cannot start manifest server without HF_TOKEN." manifest_process = None log_queue = queue.Queue() try: # Start manifest server in background with explicit CUDA_VISIBLE_DEVICES manifest_cmd = f""" cd duckdb-nsql/ && CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \ --model_type huggingface \ --model_generation_type text-generation \ --model_name_or_path {model_name} \ --fp16 \ --device 0 """ manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True) threading.Thread(target=stream_output, args=(manifest_process, log_queue), daemon=True).start() results.append("Started manifest server in background.") # Wait for the server to initialize (adjust time as needed) for _ in range(30): try: line = log_queue.get(timeout=1) manifest_logs.append(line) if "Running on" in line: # Server is ready break except queue.Empty: pass # Run inference inference_cmd = f""" cd duckdb-nsql/ && python eval/predict.py \ predict \ eval/data/dev.json \ eval/data/tables.json \ --output-dir output/ \ --stop-tokens ';' \ --overwrite-manifest \ --manifest-client huggingface \ --manifest-connection http://localhost:5000 \ --prompt-format duckdbinstgraniteshort """ inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True) results.append("Inference completed.") # Extract JSON file path from inference output json_path_match = re.search(r'(.*\.json)', inference_result.stdout) if not json_path_match: raise ValueError("Could not find JSON file path in inference output") json_file = os.path.basename(json_path_match.group(1)) results.append(f"Generated JSON file: {json_file}") # Run evaluation eval_cmd = f""" cd duckdb-nsql/ && python eval/evaluate.py evaluate \ --gold eval/data/dev.json \ --db eval/data/databases/ \ --tables eval/data/tables.json \ --output-dir output/ \ --pred output/{json_file} """ eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True) # Extract and format metrics from eval output metrics = eval_result.stdout if metrics: results.append(f"Evaluation completed:\n{metrics}") else: results.append("Evaluation completed, but couldn't get metrics.") except subprocess.CalledProcessError as e: results.append(f"Error occurred: {str(e)}") results.append(f"Command output: {e.output}") except Exception as e: results.append(f"An unexpected error occurred: {str(e)}") finally: # Terminate the background manifest server if manifest_process: manifest_process.terminate() results.append("Terminated manifest server.") # Collect any remaining logs while True: try: line = log_queue.get_nowait() manifest_logs.append(line) except queue.Empty: break return "\n\n".join(results), "\n".join(manifest_logs) with gr.Blocks() as demo: gr.Markdown("# DuckDB SQL Evaluation App") model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)") start_btn = gr.Button("Start Evaluation") output = gr.Textbox(label="Evaluation Output", lines=20) manifest_output = gr.Textbox(label="Manifest Server Logs", lines=20) start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=[output, manifest_output]) demo.launch()