UnarineLeo's picture
Update app.py
fac5507 verified
import streamlit as st
from transformers import pipeline
from io import StringIO
unmasker = pipeline('fill-mask', model='dsfsi/zabantu-nso-120m')
st.set_page_config(layout="wide")
def fill_mask(sentences):
results = {}
warnings = []
for sentence in sentences:
if "<mask>" in sentence:
unmasked = unmasker(sentence)
results[sentence] = unmasked
else:
warnings.append(f"Warning: No <mask> token found in sentence: {sentence}")
return results, warnings
def replace_mask(sentence, predicted_word):
return sentence.replace("<mask>", f"**{predicted_word}**")
st.write(f"")
img1, img2, img3 = st.columns(3)
with img2:
with st.container(border=False):
st.image("logo_transparent_small.png")
st.markdown("""
<div style='text-align: center;'>
<a href='https://github.com/dsfsi' target='_blank'>Github</a> |
<a href='https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform' target='_blank'>Feedback Form</a> |
<a href='https://huggingface.co/papers/1911.02116' target='_blank'>arxiv</a>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style='text-align: center;'>
<h2>Fill Mask | Zabantu-nso-120m</h2>
</div>
""", unsafe_allow_html=True)
st.write(f"")
st.write(f"")
st.markdown("This is a variant of Zabantu pre-trained on a monolingual dataset of Sepedi(nso) sentences on a transformer network with 120 million traininable parameters.")
with st.expander("More information about the space"):
st.write('''
Authors: Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, Veselin Stoyanov
''')
cit1,cit2 = st.columns(2)
# with cit1:
# with cit2:
col1, col2 = st.columns(2)
if 'text_input' not in st.session_state:
st.session_state['text_input'] = ""
if 'warnings' not in st.session_state:
st.session_state['warnings'] = []
with col1:
with st.container(border=True):
st.markdown("Input :clipboard:")
select_options = ['Choose option', 'Enter text input', 'Upload a file(csv/txt)']
sample_sentence = "bašomedi ba polase ya dinamune ya zebediela citrus ba hlomile magato a <mask> malebana le go se sepetšwe botse ga dilo ka polaseng eo."
option_selected = st.selectbox(f"Select an input option:", select_options, index=0)
if option_selected == 'Enter text input':
text_input = st.text_area(
"Enter sentences with <mask> token(one sentence per line):",
value=st.session_state['text_input']
)
input_sentences = text_input.split("\n")
if st.button("Submit",use_container_width=True):
result, warnings = fill_mask(input_sentences)
st.session_state['warnings'] = warnings
if option_selected == 'Upload a file(csv/txt)':
uploaded_file = st.file_uploader("Choose a file-(one sentence per line)")
if uploaded_file is not None:
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
string_data = stringio.read()
input_sentences = string_data.split("\n")
if st.button("Submit",use_container_width=True):
result, warnings = fill_mask(input_sentences)
st.session_state['warnings'] = warnings
if st.session_state['warnings']:
for warning in st.session_state['warnings']:
st.warning(warning)
st.markdown("Example")
st.code(sample_sentence, wrap_lines=True)
if st.button("Test Example",use_container_width=True):
result, warnings = fill_mask(sample_sentence.split("\n"))
with col2:
with st.container(border=True):
st.markdown("Output :bar_chart:")
if 'result' in locals() and result:
if len(result) == 1:
for sentence, predictions in result.items():
for prediction in predictions:
predicted_word = prediction['token_str']
score = prediction['score'] * 100
st.markdown(f"""
<div class="bar">
<div class="bar-fill" style="width: {score}%;"></div>
</div>
<div class="container">
<div style="align-items: left;">{predicted_word}</div>
<div style="align-items: center;">{score:.2f}%</div>
</div>
""", unsafe_allow_html=True)
else:
index = 0
for sentence, predictions in result.items():
index += 1
if predictions:
top_prediction = predictions[0]
predicted_word = top_prediction['token_str']
score = top_prediction['score'] * 100
st.markdown(f"""
<div class="bar">
<div class="bar-fill" style="width: {score}%;"></div>
</div>
<div class="container">
<div style="align-items: left;">{predicted_word} (line {index})</div>
<div style="align-items: right;">{score:.2f}%</div>
</div>
""", unsafe_allow_html=True)
if 'result' in locals():
if result:
line = 0
for sentence, predictions in result.items():
line += 1
predicted_word = predictions[0]['token_str']
full_sentence = replace_mask(sentence, predicted_word)
st.write(f"**Sentence {line}:** {full_sentence }")
css = """
<style>
footer {display:none !important;}
.gr-button-primary {
z-index: 14;
height: 43px;
width: 130px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(17, 20, 45) !important;
border: none !important;
text-align: center !important;
font-family: Poppins !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 12px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: none !important;
}
.gr-button-primary:hover{
z-index: 14;
height: 43px;
width: 130px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(66, 133, 244) !important;
border: none !important;
text-align: center !important;
font-family: Poppins !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 12px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
--tw-bg-opacity: 1 !important;
background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
--tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
--tw-gradient-from: rgb(17, 20, 45) !important;
--tw-gradient-to: rgb(255 150 51 / 0);
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500{
--tw-gradient-from:rgb(17, 20, 45) !important;
--tw-gradient-to: rgb(37 56 133 / 37%);
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500{
--tw-text-opacity: 1 !important;
color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}
.container {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 5px;
width: 100%;
}
.bar {
# width: 70%;
background-color: #e6e6e6;
border-radius: 12px;
overflow: hidden;
margin-right: 10px;
height: 5px;
}
.bar-fill {
background-color: #17152e;
height: 100%;
border-radius: 12px;
}
</style>
"""
st.markdown(css, unsafe_allow_html=True)