File size: 8,481 Bytes
b205935
 
ddd231c
b205935
a0b3314
b205935
d508679
 
b205935
 
d508679
b205935
d508679
 
 
 
 
 
b205935
 
d508679
b205935
fac5507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e667ee
ddd231c
d028f12
0e667ee
fac5507
 
 
 
 
 
 
 
 
d508679
0e667ee
d508679
 
0e667ee
d508679
 
 
 
 
 
ddd231c
 
075a044
ddd231c
 
 
 
 
c5ebe1e
ddd231c
 
d508679
ddd231c
 
 
d508679
 
ddd231c
 
 
d5f01a9
ddd231c
 
 
 
 
 
 
 
 
 
d508679
 
 
 
0e667ee
d508679
 
ddd231c
 
0e667ee
 
d508679
 
 
ddd231c
d508679
 
 
 
 
 
 
 
 
 
 
 
 
 
0e667ee
ddd231c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e667ee
ddd231c
 
 
 
 
 
 
b205935
 
 
0e667ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b205935
0e667ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b205935
0e667ee
 
 
b205935
0e667ee
 
b205935
0e667ee
 
 
 
b205935
0e667ee
 
 
 
 
 
 
 
 
d508679
0e667ee
 
 
 
 
 
 
 
d508679
0e667ee
 
 
 
e828242
0e667ee
 
 
 
 
b205935
d508679
b205935
 
0e667ee
e828242
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st
from transformers import pipeline
from io import StringIO

unmasker = pipeline('fill-mask', model='dsfsi/zabantu-nso-120m')

st.set_page_config(layout="wide")

def fill_mask(sentences):
    results = {}
    warnings = []
    for sentence in sentences:
        if "<mask>" in sentence:
            unmasked = unmasker(sentence)
            results[sentence] = unmasked
        else:
            warnings.append(f"Warning: No <mask> token found in sentence: {sentence}")
    return results, warnings

def replace_mask(sentence, predicted_word):
    return sentence.replace("<mask>", f"**{predicted_word}**")

st.write(f"")
img1, img2, img3 = st.columns(3)
with img2:
    with st.container(border=False):
        st.image("logo_transparent_small.png")

st.markdown("""
    <div style='text-align: center;'>
        <a href='https://github.com/dsfsi' target='_blank'>Github</a> |
        <a href='https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform' target='_blank'>Feedback Form</a> |
        <a href='https://huggingface.co/papers/1911.02116' target='_blank'>arxiv</a>
    </div>
""", unsafe_allow_html=True)
 
st.markdown("""
    <div style='text-align: center;'>
      <h2>Fill Mask | Zabantu-nso-120m</h2>    
    </div>
""", unsafe_allow_html=True)
st.write(f"")
st.write(f"")

st.markdown("This is a variant of Zabantu pre-trained on a monolingual dataset of Sepedi(nso) sentences on a transformer network with 120 million traininable parameters.")

with st.expander("More information about the space"):
    st.write('''
        Authors: Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, Veselin Stoyanov
    ''')
    cit1,cit2 = st.columns(2)
    # with cit1:
    # with cit2:


col1, col2 = st.columns(2)

if 'text_input' not in st.session_state:
    st.session_state['text_input'] = ""

if 'warnings' not in st.session_state:
    st.session_state['warnings'] = []

with col1:
    with st.container(border=True):
        st.markdown("Input :clipboard:")

        select_options = ['Choose option', 'Enter text input', 'Upload a file(csv/txt)']
        sample_sentence = "bašomedi ba polase ya dinamune ya zebediela citrus ba hlomile magato a <mask> malebana le go se sepetšwe botse ga dilo ka polaseng eo."

        option_selected = st.selectbox(f"Select an input option:", select_options, index=0)

        if option_selected == 'Enter text input':
            text_input = st.text_area(
                "Enter sentences with <mask> token(one sentence per line):",
                value=st.session_state['text_input']
            )
        
            input_sentences = text_input.split("\n")
    
            if st.button("Submit",use_container_width=True):
                result, warnings = fill_mask(input_sentences)
                st.session_state['warnings'] = warnings 

        if option_selected == 'Upload a file(csv/txt)':
            
            uploaded_file = st.file_uploader("Choose a file-(one sentence per line)")
            if uploaded_file is not None:
                
                stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
                string_data = stringio.read()
                
                input_sentences = string_data.split("\n")
    
                if st.button("Submit",use_container_width=True):
                    result, warnings = fill_mask(input_sentences)
                    st.session_state['warnings'] = warnings 
    
        if st.session_state['warnings']:
            for warning in st.session_state['warnings']:
                st.warning(warning)

        st.markdown("Example")
        st.code(sample_sentence, wrap_lines=True)
        if st.button("Test Example",use_container_width=True):
            result, warnings = fill_mask(sample_sentence.split("\n"))

with col2:
    with st.container(border=True):
        st.markdown("Output :bar_chart:")
        if 'result' in locals() and result:  
            if len(result) == 1:
                for sentence, predictions in result.items():
                    for prediction in predictions:
                        predicted_word = prediction['token_str']
                        score = prediction['score'] * 100
    
                        st.markdown(f"""
                        <div class="bar">
                            <div class="bar-fill" style="width: {score}%;"></div>
                        </div>
                        <div class="container">
                            <div style="align-items: left;">{predicted_word}</div>
                            <div style="align-items: center;">{score:.2f}%</div>
                        </div>
                        """, unsafe_allow_html=True)

            else:
                index = 0
                for sentence, predictions in result.items():
                    index += 1
                    if predictions:
                        top_prediction = predictions[0]
                        predicted_word = top_prediction['token_str']
                        score = top_prediction['score'] * 100
    
                        st.markdown(f"""
                        <div class="bar">
                            <div class="bar-fill" style="width: {score}%;"></div>
                        </div>
                        <div class="container">
                            <div style="align-items: left;">{predicted_word} (line {index})</div>
                            <div style="align-items: right;">{score:.2f}%</div>
                        </div>
                        """, unsafe_allow_html=True)

                
if 'result' in locals():  
    if result:
        line = 0
        for sentence, predictions in result.items():
            line += 1
            predicted_word = predictions[0]['token_str']
            full_sentence = replace_mask(sentence, predicted_word)
            st.write(f"**Sentence {line}:** {full_sentence }")

css = """
<style>
footer {display:none !important;}

.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(66, 133, 244) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
    --tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
    --tw-gradient-from: rgb(17, 20, 45) !important;
    --tw-gradient-to: rgb(255 150 51 / 0);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500{
    --tw-gradient-from:rgb(17, 20, 45) !important; 
    --tw-gradient-to: rgb(37 56 133 / 37%);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500{
    --tw-text-opacity: 1 !important;
    color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}

.container {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin-bottom: 5px;
    width: 100%;
}
.bar {
    # width: 70%;
    background-color: #e6e6e6;
    border-radius: 12px;
    overflow: hidden;
    margin-right: 10px;
    height: 5px;
}
.bar-fill {
    background-color: #17152e;
    height: 100%;
    border-radius: 12px;
}

</style>
"""

st.markdown(css, unsafe_allow_html=True)