drewThomasson's picture
Upload 51 files
3e989b2 verified
raw
history blame
20.8 kB
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt')
from pathlib import Path
import librosa
import scipy
import torch
import torchaudio
from cached_path import cached_path
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
from langchain.text_splitter import RecursiveCharacterTextSplitter
import yaml
from . import models
from . import utils
from .phoneme import PhonemeConverterFactory
from .text_utils import TextCleaner
from .Utils.PLBERT.util import load_plbert
from .Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
LIBRI_TTS_CHECKPOINT_URL = "https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/Models/LibriTTS/epochs_2nd_00020.pth"
LIBRI_TTS_CONFIG_URL = "https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/Models/LibriTTS/config.yml?download=true"
ASR_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/ASR/epoch_00080.pth"
ASR_CONFIG_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/ASR/config.yml"
F0_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/JDC/bst.t7"
BERT_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/PLBERT/step_1000000.t7"
BERT_CONFIG_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/PLBERT/config.yml"
DEFAULT_TARGET_VOICE_URL = "https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav"
SINGLE_INFERENCE_MAX_LEN = 420
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def segment_text(text):
splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", " ", ""],
chunk_size=SINGLE_INFERENCE_MAX_LEN,
chunk_overlap=0,
length_function=len,
)
segments = splitter.split_text(text)
return segments
class StyleTTS2:
def __init__(self, model_checkpoint_path=None, config_path=None, phoneme_converter='gruut'):
self.model = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.phoneme_converter = PhonemeConverterFactory.load_phoneme_converter(phoneme_converter)
self.config = None
self.model_params = None
self.model = self.load_model(model_path=model_checkpoint_path, config_path=config_path)
self.sampler = DiffusionSampler(
self.model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def load_model(self, model_path=None, config_path=None):
"""
Loads model to prepare for inference. Loads checkpoints from provided paths or from local cache (or downloads
default checkpoints to local cache if not present).
:param model_path: Path to LibriTTS StyleTTS2 model checkpoint (TODO: LJSpeech model support)
:param config_path: Path to LibriTTS StyleTTS2 model config JSON (TODO: LJSpeech model support)
:return:
"""
if not model_path or not Path(model_path).exists():
print("Invalid or missing model checkpoint path. Loading default model...")
model_path = cached_path(LIBRI_TTS_CHECKPOINT_URL)
if not config_path or not Path(config_path).exists():
print("Invalid or missing config path. Loading default config...")
config_path = cached_path(LIBRI_TTS_CONFIG_URL)
self.config = yaml.safe_load(open(config_path))
# load pretrained ASR model
ASR_config = self.config.get('ASR_config', False)
if not ASR_config or not Path(ASR_config).exists():
print("Invalid ASR config path. Loading default config...")
ASR_config = cached_path(ASR_CONFIG_URL)
ASR_path = self.config.get('ASR_path', False)
if not ASR_path or not Path(ASR_path).exists():
print("Invalid ASR model checkpoint path. Loading default model...")
ASR_path = cached_path(ASR_CHECKPOINT_URL)
text_aligner = models.load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = self.config.get('F0_path', False)
if F0_path or not Path(F0_path).exists():
print("Invalid F0 model path. Loading default model...")
F0_path = cached_path(F0_CHECKPOINT_URL)
pitch_extractor = models.load_F0_models(F0_path)
# load BERT model
BERT_dir_path = self.config.get('PLBERT_dir', False) # Directory at BERT_dir_path should contain PLBERT config.yml AND checkpoint
if not BERT_dir_path or not Path(BERT_dir_path).exists():
BERT_config_path = cached_path(BERT_CONFIG_URL)
BERT_checkpoint_path = cached_path(BERT_CHECKPOINT_URL)
plbert = load_plbert(None, config_path=BERT_config_path, checkpoint_path=BERT_checkpoint_path)
else:
plbert = load_plbert(BERT_dir_path)
self.model_params = utils.recursive_munch(self.config['model_params'])
model = models.build_model(self.model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(self.device) for key in model]
params_whole = torch.load(model_path, map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
return model
def compute_style(self, path):
"""
Compute style vector, essentially an embedding that captures the characteristics
of the target voice that is being cloned
:param path: Path to target voice audio file
:return: style vector
"""
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(self.device)
with torch.no_grad():
ref_s = self.model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = self.model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def inference(self,
text: str,
target_voice_path=None,
output_wav_file=None,
output_sample_rate=24000,
alpha=0.3,
beta=0.7,
diffusion_steps=5,
embedding_scale=1,
ref_s=None):
"""
Text-to-speech function
:param text: Input text to turn into speech.
:param target_voice_path: Path to audio file of target voice to clone.
:param output_wav_file: Name of output audio file (if output WAV file is desired).
:param output_sample_rate: Output sample rate (default 24000).
:param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
:param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
:param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
:param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
:param ref_s: Pre-computed style vector to pass directly.
:return: audio data as a Numpy array (will also create the WAV file if output_wav_file was set).
"""
# BERT model is limited by a tensor size [1, 512] during its inference, which roughly corresponds to ~450 characters
if len(text) > SINGLE_INFERENCE_MAX_LEN:
return self.long_inference(text,
target_voice_path=target_voice_path,
output_wav_file=output_wav_file,
output_sample_rate=output_sample_rate,
alpha=alpha,
beta=beta,
diffusion_steps=diffusion_steps,
embedding_scale=embedding_scale,
ref_s=ref_s)
if ref_s is None:
# default to clone https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav voice from LibriVox (public domain)
if not target_voice_path or not Path(target_voice_path).exists():
print("Cloning default target voice...")
target_voice_path = cached_path(DEFAULT_TARGET_VOICE_URL)
ref_s = self.compute_style(target_voice_path) # target style vector
text = text.strip()
text = text.replace('"', '')
phonemized_text = self.phoneme_converter.phonemize(text)
ps = word_tokenize(phonemized_text)
phoneme_string = ' '.join(ps)
textcleaner = TextCleaner()
tokens = textcleaner(phoneme_string)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = length_to_mask(input_lengths).to(self.device)
t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = self.sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
# duration prediction
d = self.model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = self.model.predictor.lstm(d)
duration = self.model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = self.model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
output = out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
if output_wav_file:
scipy.io.wavfile.write(output_wav_file, rate=output_sample_rate, data=output)
return output
def long_inference(self,
text: str,
target_voice_path=None,
output_wav_file=None,
output_sample_rate=24000,
alpha=0.3,
beta=0.7,
t=0.7,
diffusion_steps=5,
embedding_scale=1,
ref_s=None):
"""
Inference for longform text. Used automatically in inference() when needed.
:param text: Input text to turn into speech.
:param target_voice_path: Path to audio file of target voice to clone.
:param output_wav_file: Name of output audio file (if output WAV file is desired).
:param output_sample_rate: Output sample rate (default 24000).
:param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
:param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
:param t: Determines consistency of style across inference segments (0 lowest, 1 highest)
:param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
:param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
:param ref_s: Pre-computed style vector to pass directly.
:return: concatenated audio data as a Numpy array (will also create the WAV file if output_wav_file was set).
"""
if ref_s is None:
# default to clone https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav voice from LibriVox (public domain)
if not target_voice_path or not Path(target_voice_path).exists():
print("Cloning default target voice...")
target_voice_path = cached_path(DEFAULT_TARGET_VOICE_URL)
ref_s = self.compute_style(target_voice_path) # target style vector
text_segments = segment_text(text)
segments = []
prev_s = None
for text_segment in text_segments:
# Address cut-off sentence issue due to langchain text splitter
if text_segment[-1] != '.':
text_segment += ', '
segment_output, prev_s = self.long_inference_segment(text_segment,
prev_s,
ref_s,
alpha=alpha,
beta=beta,
t=t,
diffusion_steps=diffusion_steps,
embedding_scale=embedding_scale)
segments.append(segment_output)
output = np.concatenate(segments)
if output_wav_file:
scipy.io.wavfile.write(output_wav_file, rate=output_sample_rate, data=output)
return output
def long_inference_segment(self,
text,
prev_s,
ref_s,
alpha=0.3,
beta=0.7,
t=0.7,
diffusion_steps=5,
embedding_scale=1):
"""
Performs inference for segment of longform text; see long_inference()
:param text: Input text
:param prev_s: Style vector of previous speech segment (used to keep voice consistent in longform inference)
:param ref_s: Pre-computed style vector of target voice to clone
:param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
:param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
:param t: Determines consistency of style across inference segments (0 lowest, 1 highest)
:param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
:param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
:return: audio data as a Numpy array
"""
text = text.strip()
text = text.replace('"', '')
phonemized_text = self.phoneme_converter.phonemize(text)
ps = word_tokenize(phonemized_text)
phoneme_string = ' '.join(ps)
phoneme_string = phoneme_string.replace('``', '"')
phoneme_string = phoneme_string.replace("''", '"')
textcleaner = TextCleaner()
tokens = textcleaner(phoneme_string)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = length_to_mask(input_lengths).to(self.device)
t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = self.sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if prev_s is not None:
# convex combination of previous and current style
s_pred = t * prev_s + (1 - t) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
s_pred = torch.cat([ref, s], dim=-1)
d = self.model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = self.model.predictor.lstm(d)
duration = self.model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = self.model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-100], s_pred