File size: 20,840 Bytes
3e989b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt')
from pathlib import Path
import librosa
import scipy
import torch
import torchaudio
from cached_path import cached_path
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
from langchain.text_splitter import RecursiveCharacterTextSplitter
import yaml
from . import models
from . import utils
from .phoneme import PhonemeConverterFactory
from .text_utils import TextCleaner
from .Utils.PLBERT.util import load_plbert
from .Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
LIBRI_TTS_CHECKPOINT_URL = "https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/Models/LibriTTS/epochs_2nd_00020.pth"
LIBRI_TTS_CONFIG_URL = "https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/Models/LibriTTS/config.yml?download=true"
ASR_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/ASR/epoch_00080.pth"
ASR_CONFIG_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/ASR/config.yml"
F0_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/JDC/bst.t7"
BERT_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/PLBERT/step_1000000.t7"
BERT_CONFIG_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/PLBERT/config.yml"
DEFAULT_TARGET_VOICE_URL = "https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav"
SINGLE_INFERENCE_MAX_LEN = 420
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def segment_text(text):
splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", " ", ""],
chunk_size=SINGLE_INFERENCE_MAX_LEN,
chunk_overlap=0,
length_function=len,
)
segments = splitter.split_text(text)
return segments
class StyleTTS2:
def __init__(self, model_checkpoint_path=None, config_path=None, phoneme_converter='gruut'):
self.model = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.phoneme_converter = PhonemeConverterFactory.load_phoneme_converter(phoneme_converter)
self.config = None
self.model_params = None
self.model = self.load_model(model_path=model_checkpoint_path, config_path=config_path)
self.sampler = DiffusionSampler(
self.model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def load_model(self, model_path=None, config_path=None):
"""
Loads model to prepare for inference. Loads checkpoints from provided paths or from local cache (or downloads
default checkpoints to local cache if not present).
:param model_path: Path to LibriTTS StyleTTS2 model checkpoint (TODO: LJSpeech model support)
:param config_path: Path to LibriTTS StyleTTS2 model config JSON (TODO: LJSpeech model support)
:return:
"""
if not model_path or not Path(model_path).exists():
print("Invalid or missing model checkpoint path. Loading default model...")
model_path = cached_path(LIBRI_TTS_CHECKPOINT_URL)
if not config_path or not Path(config_path).exists():
print("Invalid or missing config path. Loading default config...")
config_path = cached_path(LIBRI_TTS_CONFIG_URL)
self.config = yaml.safe_load(open(config_path))
# load pretrained ASR model
ASR_config = self.config.get('ASR_config', False)
if not ASR_config or not Path(ASR_config).exists():
print("Invalid ASR config path. Loading default config...")
ASR_config = cached_path(ASR_CONFIG_URL)
ASR_path = self.config.get('ASR_path', False)
if not ASR_path or not Path(ASR_path).exists():
print("Invalid ASR model checkpoint path. Loading default model...")
ASR_path = cached_path(ASR_CHECKPOINT_URL)
text_aligner = models.load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = self.config.get('F0_path', False)
if F0_path or not Path(F0_path).exists():
print("Invalid F0 model path. Loading default model...")
F0_path = cached_path(F0_CHECKPOINT_URL)
pitch_extractor = models.load_F0_models(F0_path)
# load BERT model
BERT_dir_path = self.config.get('PLBERT_dir', False) # Directory at BERT_dir_path should contain PLBERT config.yml AND checkpoint
if not BERT_dir_path or not Path(BERT_dir_path).exists():
BERT_config_path = cached_path(BERT_CONFIG_URL)
BERT_checkpoint_path = cached_path(BERT_CHECKPOINT_URL)
plbert = load_plbert(None, config_path=BERT_config_path, checkpoint_path=BERT_checkpoint_path)
else:
plbert = load_plbert(BERT_dir_path)
self.model_params = utils.recursive_munch(self.config['model_params'])
model = models.build_model(self.model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(self.device) for key in model]
params_whole = torch.load(model_path, map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
return model
def compute_style(self, path):
"""
Compute style vector, essentially an embedding that captures the characteristics
of the target voice that is being cloned
:param path: Path to target voice audio file
:return: style vector
"""
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(self.device)
with torch.no_grad():
ref_s = self.model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = self.model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def inference(self,
text: str,
target_voice_path=None,
output_wav_file=None,
output_sample_rate=24000,
alpha=0.3,
beta=0.7,
diffusion_steps=5,
embedding_scale=1,
ref_s=None):
"""
Text-to-speech function
:param text: Input text to turn into speech.
:param target_voice_path: Path to audio file of target voice to clone.
:param output_wav_file: Name of output audio file (if output WAV file is desired).
:param output_sample_rate: Output sample rate (default 24000).
:param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
:param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
:param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
:param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
:param ref_s: Pre-computed style vector to pass directly.
:return: audio data as a Numpy array (will also create the WAV file if output_wav_file was set).
"""
# BERT model is limited by a tensor size [1, 512] during its inference, which roughly corresponds to ~450 characters
if len(text) > SINGLE_INFERENCE_MAX_LEN:
return self.long_inference(text,
target_voice_path=target_voice_path,
output_wav_file=output_wav_file,
output_sample_rate=output_sample_rate,
alpha=alpha,
beta=beta,
diffusion_steps=diffusion_steps,
embedding_scale=embedding_scale,
ref_s=ref_s)
if ref_s is None:
# default to clone https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav voice from LibriVox (public domain)
if not target_voice_path or not Path(target_voice_path).exists():
print("Cloning default target voice...")
target_voice_path = cached_path(DEFAULT_TARGET_VOICE_URL)
ref_s = self.compute_style(target_voice_path) # target style vector
text = text.strip()
text = text.replace('"', '')
phonemized_text = self.phoneme_converter.phonemize(text)
ps = word_tokenize(phonemized_text)
phoneme_string = ' '.join(ps)
textcleaner = TextCleaner()
tokens = textcleaner(phoneme_string)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = length_to_mask(input_lengths).to(self.device)
t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = self.sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
# duration prediction
d = self.model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = self.model.predictor.lstm(d)
duration = self.model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = self.model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
output = out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
if output_wav_file:
scipy.io.wavfile.write(output_wav_file, rate=output_sample_rate, data=output)
return output
def long_inference(self,
text: str,
target_voice_path=None,
output_wav_file=None,
output_sample_rate=24000,
alpha=0.3,
beta=0.7,
t=0.7,
diffusion_steps=5,
embedding_scale=1,
ref_s=None):
"""
Inference for longform text. Used automatically in inference() when needed.
:param text: Input text to turn into speech.
:param target_voice_path: Path to audio file of target voice to clone.
:param output_wav_file: Name of output audio file (if output WAV file is desired).
:param output_sample_rate: Output sample rate (default 24000).
:param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
:param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
:param t: Determines consistency of style across inference segments (0 lowest, 1 highest)
:param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
:param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
:param ref_s: Pre-computed style vector to pass directly.
:return: concatenated audio data as a Numpy array (will also create the WAV file if output_wav_file was set).
"""
if ref_s is None:
# default to clone https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav voice from LibriVox (public domain)
if not target_voice_path or not Path(target_voice_path).exists():
print("Cloning default target voice...")
target_voice_path = cached_path(DEFAULT_TARGET_VOICE_URL)
ref_s = self.compute_style(target_voice_path) # target style vector
text_segments = segment_text(text)
segments = []
prev_s = None
for text_segment in text_segments:
# Address cut-off sentence issue due to langchain text splitter
if text_segment[-1] != '.':
text_segment += ', '
segment_output, prev_s = self.long_inference_segment(text_segment,
prev_s,
ref_s,
alpha=alpha,
beta=beta,
t=t,
diffusion_steps=diffusion_steps,
embedding_scale=embedding_scale)
segments.append(segment_output)
output = np.concatenate(segments)
if output_wav_file:
scipy.io.wavfile.write(output_wav_file, rate=output_sample_rate, data=output)
return output
def long_inference_segment(self,
text,
prev_s,
ref_s,
alpha=0.3,
beta=0.7,
t=0.7,
diffusion_steps=5,
embedding_scale=1):
"""
Performs inference for segment of longform text; see long_inference()
:param text: Input text
:param prev_s: Style vector of previous speech segment (used to keep voice consistent in longform inference)
:param ref_s: Pre-computed style vector of target voice to clone
:param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
:param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
:param t: Determines consistency of style across inference segments (0 lowest, 1 highest)
:param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
:param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
:return: audio data as a Numpy array
"""
text = text.strip()
text = text.replace('"', '')
phonemized_text = self.phoneme_converter.phonemize(text)
ps = word_tokenize(phonemized_text)
phoneme_string = ' '.join(ps)
phoneme_string = phoneme_string.replace('``', '"')
phoneme_string = phoneme_string.replace("''", '"')
textcleaner = TextCleaner()
tokens = textcleaner(phoneme_string)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = length_to_mask(input_lengths).to(self.device)
t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = self.sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if prev_s is not None:
# convex combination of previous and current style
s_pred = t * prev_s + (1 - t) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
s_pred = torch.cat([ref, s], dim=-1)
d = self.model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = self.model.predictor.lstm(d)
duration = self.model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = self.model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-100], s_pred
|