Spaces:
Runtime error
Runtime error
center_crop variable add to everywhere
#3
by
dkebudi
- opened
app.py
CHANGED
@@ -246,13 +246,13 @@ def start_training(
|
|
246 |
commands = [
|
247 |
"pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
|
248 |
"pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
|
249 |
-
f"center_crop={bool(True)}",
|
250 |
f"instance_prompt={concept_sentence}",
|
251 |
f"dataset_name=./{dataset_folder}",
|
252 |
"caption_column=prompt",
|
253 |
f"output_dir={slugged_lora_name}",
|
254 |
f"mixed_precision={mixed_precision}",
|
255 |
f"resolution={int(resolution)}",
|
|
|
256 |
f"train_batch_size={int(train_batch_size)}",
|
257 |
f"repeats={int(repeats)}",
|
258 |
f"gradient_accumulation_steps={int(gradient_accumulation_steps)}",
|
@@ -393,6 +393,7 @@ def start_training_og(
|
|
393 |
text_encoder_learning_rate,
|
394 |
seed,
|
395 |
resolution,
|
|
|
396 |
num_train_epochs,
|
397 |
checkpointing_steps,
|
398 |
prior_loss_weight,
|
@@ -434,6 +435,7 @@ def start_training_og(
|
|
434 |
f"--output_dir={slugged_lora_name}",
|
435 |
f"--mixed_precision={mixed_precision}",
|
436 |
f"--resolution={int(resolution)}",
|
|
|
437 |
f"--train_batch_size={int(train_batch_size)}",
|
438 |
f"--repeats={int(repeats)}",
|
439 |
f"--gradient_accumulation_steps={int(gradient_accumulation_steps)}",
|
@@ -1034,6 +1036,7 @@ If you prefer command line, you can run our [training script]({training_script_u
|
|
1034 |
text_encoder_learning_rate,
|
1035 |
seed,
|
1036 |
resolution,
|
|
|
1037 |
num_train_epochs,
|
1038 |
checkpointing_steps,
|
1039 |
prior_loss_weight,
|
|
|
246 |
commands = [
|
247 |
"pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
|
248 |
"pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
|
|
|
249 |
f"instance_prompt={concept_sentence}",
|
250 |
f"dataset_name=./{dataset_folder}",
|
251 |
"caption_column=prompt",
|
252 |
f"output_dir={slugged_lora_name}",
|
253 |
f"mixed_precision={mixed_precision}",
|
254 |
f"resolution={int(resolution)}",
|
255 |
+
f"center_crop={bool(True)}",
|
256 |
f"train_batch_size={int(train_batch_size)}",
|
257 |
f"repeats={int(repeats)}",
|
258 |
f"gradient_accumulation_steps={int(gradient_accumulation_steps)}",
|
|
|
393 |
text_encoder_learning_rate,
|
394 |
seed,
|
395 |
resolution,
|
396 |
+
center_crop,
|
397 |
num_train_epochs,
|
398 |
checkpointing_steps,
|
399 |
prior_loss_weight,
|
|
|
435 |
f"--output_dir={slugged_lora_name}",
|
436 |
f"--mixed_precision={mixed_precision}",
|
437 |
f"--resolution={int(resolution)}",
|
438 |
+
f"--center_crop={bool(True)}",
|
439 |
f"--train_batch_size={int(train_batch_size)}",
|
440 |
f"--repeats={int(repeats)}",
|
441 |
f"--gradient_accumulation_steps={int(gradient_accumulation_steps)}",
|
|
|
1036 |
text_encoder_learning_rate,
|
1037 |
seed,
|
1038 |
resolution,
|
1039 |
+
center_crop,
|
1040 |
num_train_epochs,
|
1041 |
checkpointing_steps,
|
1042 |
prior_loss_weight,
|