Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers.utils import load_image | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from peft import PeftModel, LoraConfig | |
from controlnet_aux import HEDdetector | |
from PIL import Image | |
import cv2 as cv | |
import os | |
from functools import lru_cache | |
from contextlib import contextmanager | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
IP_ADAPTER = 'h94/IP-Adapter' | |
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
class PipelineManager: | |
def __init__(self): | |
self.pipe = None | |
self.current_model = None | |
self.controlnet_cache = {} | |
self.hed = None | |
def get_controlnet(self, model_name: str) -> ControlNetModel: | |
if model_name not in self.controlnet_cache: | |
self.controlnet_cache[model_name] = ControlNetModel.from_pretrained( | |
model_name, | |
cache_dir="./models_cache", | |
torch_dtype=torch_dtype | |
).to(device) | |
return self.controlnet_cache[model_name] | |
def get_hed_detector(self): | |
if self.hed is None: | |
self.hed = HEDdetector.from_pretrained('lllyasviel/Annotators') | |
return self.hed | |
def initialize_pipeline(self, model_id, controlnet_model): | |
controlnet = self.get_controlnet(controlnet_model) | |
if not self.pipe or model_id != self.current_model: | |
self.pipe = self.create_pipeline(model_id, controlnet) | |
self.current_model = model_id | |
return self.pipe | |
def create_pipeline(self, model_id, controlnet): | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch_dtype, | |
controlnet=controlnet, | |
cache_dir="./models_cache" | |
).to(device) | |
if os.path.exists('./lora_logos'): | |
pipe = self.load_lora_adapters(pipe) | |
return pipe | |
def load_lora_adapters(self, pipe): | |
unet_dir = os.path.join('./lora_logos', "unet") | |
text_encoder_dir = os.path.join('./lora_logos', "text_encoder") | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_dir, adapter_name="default") | |
if os.path.exists(text_encoder_dir): | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_dir) | |
return pipe.to(device) | |
def torch_inference_mode(): | |
with torch.inference_mode(), torch.autocast(device.type): | |
yield | |
def process_embeddings(prompt, negative_prompt, tokenizer, text_encoder): | |
def process_text(text): | |
tokens = tokenizer(text, return_tensors="pt", truncation=False).input_ids | |
chunks = [tokens[:, i:i+77].to(device) for i in range(0, tokens.size(1), 77)] | |
return torch.cat([text_encoder(chunk)[0] for chunk in chunks], dim=1) | |
prompt_emb = process_text(prompt) | |
negative_emb = process_text(negative_prompt) | |
max_len = max(prompt_emb.size(1), negative_emb.size(1)) | |
return ( | |
torch.nn.functional.pad(prompt_emb, (0, 0, 0, max_len - prompt_emb.size(1))), | |
torch.nn.functional.pad(negative_emb, (0, 0, 0, max_len - negative_emb.size(1))) | |
) | |
def process_control_image(image_path: str, processor: str, hed_detector) -> Image: | |
image = load_image(image_path).convert('RGB') | |
if processor == 'edge_detection': | |
edges = cv.Canny(np.array(image), 80, 160) | |
return Image.fromarray(np.repeat(edges[:, :, None], 3, axis=2)) | |
if processor == 'scribble': | |
scribble = hed_detector(image) | |
processed = cv.medianBlur(np.array(scribble), 3) | |
return Image.fromarray(cv.convertScaleAbs(processed, alpha=1.5)) | |
pipeline_mgr = PipelineManager() | |
controlnet_models = { | |
"edge_detection": "lllyasviel/sd-controlnet-canny", | |
"scribble": "lllyasviel/sd-controlnet-scribble" | |
} | |
def infer( | |
prompt, | |
negative_prompt, | |
width=512, | |
height=512, | |
num_inference_steps=20, | |
model_id='stable-diffusion-v1-5/stable-diffusion-v1-5', | |
seed=42, | |
guidance_scale=7.0, | |
lora_scale=0.5, | |
cn_enable=False, | |
cn_strength=0.0, | |
cn_mode='edge_detection', | |
cn_image=None, | |
ip_enable=False, | |
ip_scale=0.5, | |
ip_image=None, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
generator = torch.Generator(device).manual_seed(seed) | |
with torch_inference_mode(): | |
pipe = pipeline_mgr.initialize_pipeline( | |
model_id, | |
controlnet_models.get(cn_mode, controlnet_models['edge_detection']) | |
) | |
if cn_enable and not cn_image: | |
raise gr.Error("ControlNet enabled but no image provided!") | |
if ip_enable and not ip_image: | |
raise gr.Error("IP-Adapter enabled but no image provided!") | |
prompt_emb, negative_emb = process_embeddings( | |
prompt, | |
negative_prompt, | |
pipe.tokenizer, | |
pipe.text_encoder | |
) | |
params = { | |
'prompt_embeds': prompt_emb, | |
'negative_prompt_embeds': negative_emb, | |
'guidance_scale': guidance_scale, | |
'num_inference_steps': num_inference_steps, | |
'width': width, | |
'height': height, | |
'generator': generator, | |
'cross_attention_kwargs': {"scale": lora_scale}, | |
} | |
if cn_enable: | |
params['image'] = process_control_image( | |
cn_image, | |
cn_mode, | |
pipeline_mgr.get_hed_detector() | |
) | |
params['controlnet_conditioning_scale'] = float(cn_strength) | |
else: | |
params['image'] = torch.zeros((1, 3, 512, 512)).to(device) # заглушка, чтобы pipeline не падал | |
params['controlnet_conditioning_scale'] = 0.0 | |
if ip_enable: | |
pipe.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=IP_ADAPTER_WEIGHT_NAME) | |
params['ip_adapter_image'] = load_image(ip_image).convert('RGB') | |
pipe.set_ip_adapter_scale(ip_scale) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
return pipe(**params).images[0] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# ⚽️ Football Logo Generator") | |
with gr.Row(): | |
model_id = gr.Textbox( | |
label="Model ID", | |
max_lines=1, | |
placeholder="Enter model id like 'stable-diffusion-v1-5/stable-diffusion-v1-5'", | |
value=model_id_default | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
seed = gr.Number( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.0, | |
) | |
with gr.Row(): | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
) | |
# Секция Control Net | |
cn_enable = gr.Checkbox(label="Enable ControlNet") | |
with gr.Column(visible=False) as cn_options: | |
with gr.Row(): | |
cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True) | |
cn_mode = gr.Dropdown( | |
choices=["edge_detection", "scribble"], | |
value="edge_detection", | |
label="Work regime", | |
interactive=True, | |
) | |
cn_image = gr.Image(type="filepath", label="Control image") | |
cn_enable.change( | |
lambda x: gr.update(visible=x), | |
inputs=cn_enable, | |
outputs=cn_options | |
) | |
# Секция IP-Adapter | |
ip_enable = gr.Checkbox(label="Enable IP-Adapter") | |
with gr.Column(visible=False) as ip_options: | |
ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True) | |
ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True) | |
ip_enable.change( | |
lambda x: gr.update(visible=x), | |
inputs=ip_enable, | |
outputs=ip_options | |
) | |
with gr.Accordion("Optional Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
run_button = gr.Button("Run", scale=1, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_inference_steps, | |
model_id, | |
seed, | |
guidance_scale, | |
lora_scale, | |
cn_enable, | |
cn_strength, | |
cn_mode, | |
cn_image, | |
ip_enable, | |
ip_scale, | |
ip_image | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() |