dezzman's picture
Update app.py
7575df7 verified
import gradio as gr
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from peft import PeftModel, LoraConfig
from controlnet_aux import HEDdetector
from PIL import Image
import cv2 as cv
import os
from functools import lru_cache
from contextlib import contextmanager
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
IP_ADAPTER = 'h94/IP-Adapter'
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
class PipelineManager:
def __init__(self):
self.pipe = None
self.current_model = None
self.controlnet_cache = {}
self.hed = None
@lru_cache(maxsize=2)
def get_controlnet(self, model_name: str) -> ControlNetModel:
if model_name not in self.controlnet_cache:
self.controlnet_cache[model_name] = ControlNetModel.from_pretrained(
model_name,
cache_dir="./models_cache",
torch_dtype=torch_dtype
).to(device)
return self.controlnet_cache[model_name]
def get_hed_detector(self):
if self.hed is None:
self.hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
return self.hed
def initialize_pipeline(self, model_id, controlnet_model):
controlnet = self.get_controlnet(controlnet_model)
if not self.pipe or model_id != self.current_model:
self.pipe = self.create_pipeline(model_id, controlnet)
self.current_model = model_id
return self.pipe
def create_pipeline(self, model_id, controlnet):
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
controlnet=controlnet,
cache_dir="./models_cache"
).to(device)
if os.path.exists('./lora_logos'):
pipe = self.load_lora_adapters(pipe)
return pipe
def load_lora_adapters(self, pipe):
unet_dir = os.path.join('./lora_logos', "unet")
text_encoder_dir = os.path.join('./lora_logos', "text_encoder")
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_dir, adapter_name="default")
if os.path.exists(text_encoder_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_dir)
return pipe.to(device)
@contextmanager
def torch_inference_mode():
with torch.inference_mode(), torch.autocast(device.type):
yield
def process_embeddings(prompt, negative_prompt, tokenizer, text_encoder):
def process_text(text):
tokens = tokenizer(text, return_tensors="pt", truncation=False).input_ids
chunks = [tokens[:, i:i+77].to(device) for i in range(0, tokens.size(1), 77)]
return torch.cat([text_encoder(chunk)[0] for chunk in chunks], dim=1)
prompt_emb = process_text(prompt)
negative_emb = process_text(negative_prompt)
max_len = max(prompt_emb.size(1), negative_emb.size(1))
return (
torch.nn.functional.pad(prompt_emb, (0, 0, 0, max_len - prompt_emb.size(1))),
torch.nn.functional.pad(negative_emb, (0, 0, 0, max_len - negative_emb.size(1)))
)
def process_control_image(image_path: str, processor: str, hed_detector) -> Image:
image = load_image(image_path).convert('RGB')
if processor == 'edge_detection':
edges = cv.Canny(np.array(image), 80, 160)
return Image.fromarray(np.repeat(edges[:, :, None], 3, axis=2))
if processor == 'scribble':
scribble = hed_detector(image)
processed = cv.medianBlur(np.array(scribble), 3)
return Image.fromarray(cv.convertScaleAbs(processed, alpha=1.5))
pipeline_mgr = PipelineManager()
controlnet_models = {
"edge_detection": "lllyasviel/sd-controlnet-canny",
"scribble": "lllyasviel/sd-controlnet-scribble"
}
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model_id='stable-diffusion-v1-5/stable-diffusion-v1-5',
seed=42,
guidance_scale=7.0,
lora_scale=0.5,
cn_enable=False,
cn_strength=0.0,
cn_mode='edge_detection',
cn_image=None,
ip_enable=False,
ip_scale=0.5,
ip_image=None,
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
with torch_inference_mode():
pipe = pipeline_mgr.initialize_pipeline(
model_id,
controlnet_models.get(cn_mode, controlnet_models['edge_detection'])
)
if cn_enable and not cn_image:
raise gr.Error("ControlNet enabled but no image provided!")
if ip_enable and not ip_image:
raise gr.Error("IP-Adapter enabled but no image provided!")
prompt_emb, negative_emb = process_embeddings(
prompt,
negative_prompt,
pipe.tokenizer,
pipe.text_encoder
)
params = {
'prompt_embeds': prompt_emb,
'negative_prompt_embeds': negative_emb,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
'cross_attention_kwargs': {"scale": lora_scale},
}
if cn_enable:
params['image'] = process_control_image(
cn_image,
cn_mode,
pipeline_mgr.get_hed_detector()
)
params['controlnet_conditioning_scale'] = float(cn_strength)
else:
params['image'] = torch.zeros((1, 3, 512, 512)).to(device) # заглушка, чтобы pipeline не падал
params['controlnet_conditioning_scale'] = 0.0
if ip_enable:
pipe.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=IP_ADAPTER_WEIGHT_NAME)
params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
pipe.set_ip_adapter_scale(ip_scale)
pipe.fuse_lora(lora_scale=lora_scale)
return pipe(**params).images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# ⚽️ Football Logo Generator")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'stable-diffusion-v1-5/stable-diffusion-v1-5'",
value=model_id_default
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
# Секция Control Net
cn_enable = gr.Checkbox(label="Enable ControlNet")
with gr.Column(visible=False) as cn_options:
with gr.Row():
cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
cn_mode = gr.Dropdown(
choices=["edge_detection", "scribble"],
value="edge_detection",
label="Work regime",
interactive=True,
)
cn_image = gr.Image(type="filepath", label="Control image")
cn_enable.change(
lambda x: gr.update(visible=x),
inputs=cn_enable,
outputs=cn_options
)
# Секция IP-Adapter
ip_enable = gr.Checkbox(label="Enable IP-Adapter")
with gr.Column(visible=False) as ip_options:
ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)
ip_enable.change(
lambda x: gr.update(visible=x),
inputs=ip_enable,
outputs=ip_options
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
cn_enable,
cn_strength,
cn_mode,
cn_image,
ip_enable,
ip_scale,
ip_image
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()