File size: 10,661 Bytes
863f08e
5f73f5c
863f08e
7bcd902
 
8a52ce7
6f1c30f
 
 
8a52ce7
7bcd902
 
f3f96df
 
 
 
 
 
 
2b9a58e
f3f96df
 
7bcd902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a52ce7
7bcd902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a52ce7
7bcd902
 
 
8a52ce7
7bcd902
 
 
f3f96df
 
7bcd902
f3f96df
8a52ce7
7bcd902
 
 
f3f96df
7bcd902
 
 
 
 
 
 
 
 
 
f3f96df
b8002e7
 
 
 
 
 
2b9a58e
b8002e7
 
 
 
 
 
 
 
 
 
 
 
 
 
8a52ce7
7bcd902
 
b8002e7
 
f3f96df
7bcd902
b8002e7
7bcd902
b8002e7
 
 
7bcd902
 
b8002e7
 
7bcd902
 
 
 
 
 
 
b8002e7
 
 
 
67e0937
 
 
7bcd902
b8002e7
7bcd902
b8002e7
 
7bcd902
 
c1e556a
96bf16a
 
e8401d5
7bcd902
b8002e7
7bcd902
b8002e7
 
7bcd902
b8002e7
7bcd902
 
8a52ce7
c6ed7d9
 
 
 
 
 
 
 
 
7575df7
863413c
c6ed7d9
 
 
 
2b9a58e
c6ed7d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f96df
 
 
 
 
 
 
dcd37d2
f3f96df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863413c
c6ed7d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863413c
c6ed7d9
 
 
863f08e
c6ed7d9
 
 
 
 
 
 
 
 
f3f96df
 
 
 
 
 
 
c6ed7d9
 
 
863f08e
 
c6ed7d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gradio as gr
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from peft import PeftModel, LoraConfig
from controlnet_aux import HEDdetector
from PIL import Image
import cv2 as cv
import os
from functools import lru_cache
from contextlib import contextmanager

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
IP_ADAPTER = 'h94/IP-Adapter'
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

class PipelineManager:
    def __init__(self):
        self.pipe = None
        self.current_model = None
        self.controlnet_cache = {}
        self.hed = None
        
    @lru_cache(maxsize=2)
    def get_controlnet(self, model_name: str) -> ControlNetModel:
        if model_name not in self.controlnet_cache:
            self.controlnet_cache[model_name] = ControlNetModel.from_pretrained(
                model_name, 
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            ).to(device)
        return self.controlnet_cache[model_name]
    
    def get_hed_detector(self):
        if self.hed is None:
            self.hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
        return self.hed

    def initialize_pipeline(self, model_id, controlnet_model):
        controlnet = self.get_controlnet(controlnet_model)
        if not self.pipe or model_id != self.current_model:
            self.pipe = self.create_pipeline(model_id, controlnet)
            self.current_model = model_id
        return self.pipe

    def create_pipeline(self, model_id, controlnet):
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            controlnet=controlnet,
            cache_dir="./models_cache"
        ).to(device)
        
        if os.path.exists('./lora_logos'):
            pipe = self.load_lora_adapters(pipe)
            
        return pipe

    def load_lora_adapters(self, pipe):
        unet_dir = os.path.join('./lora_logos', "unet")
        text_encoder_dir = os.path.join('./lora_logos', "text_encoder")
        
        pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_dir, adapter_name="default")
        if os.path.exists(text_encoder_dir):
            pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_dir)
            
        return pipe.to(device)

@contextmanager
def torch_inference_mode():
    with torch.inference_mode(), torch.autocast(device.type):
        yield

def process_embeddings(prompt, negative_prompt, tokenizer, text_encoder):
    def process_text(text):
        tokens = tokenizer(text, return_tensors="pt", truncation=False).input_ids
        chunks = [tokens[:, i:i+77].to(device) for i in range(0, tokens.size(1), 77)]
        return torch.cat([text_encoder(chunk)[0] for chunk in chunks], dim=1)
    
    prompt_emb = process_text(prompt)
    negative_emb = process_text(negative_prompt)
    max_len = max(prompt_emb.size(1), negative_emb.size(1))
    
    return (
        torch.nn.functional.pad(prompt_emb, (0, 0, 0, max_len - prompt_emb.size(1))),
        torch.nn.functional.pad(negative_emb, (0, 0, 0, max_len - negative_emb.size(1)))
    )

def process_control_image(image_path: str, processor: str, hed_detector) -> Image:
    image = load_image(image_path).convert('RGB')
    
    if processor == 'edge_detection':
        edges = cv.Canny(np.array(image), 80, 160)
        return Image.fromarray(np.repeat(edges[:, :, None], 3, axis=2))
    
    if processor == 'scribble':
        scribble = hed_detector(image)
        processed = cv.medianBlur(np.array(scribble), 3)
        return Image.fromarray(cv.convertScaleAbs(processed, alpha=1.5))

pipeline_mgr = PipelineManager()
controlnet_models = {
    "edge_detection": "lllyasviel/sd-controlnet-canny",
    "scribble": "lllyasviel/sd-controlnet-scribble"
}

def infer(
    prompt, 
    negative_prompt, 
    width=512, 
    height=512, 
    num_inference_steps=20, 
    model_id='stable-diffusion-v1-5/stable-diffusion-v1-5', 
    seed=42, 
    guidance_scale=7.0, 
    lora_scale=0.5,
    cn_enable=False,
    cn_strength=0.0,
    cn_mode='edge_detection',
    cn_image=None,
    ip_enable=False,
    ip_scale=0.5,
    ip_image=None,
    progress=gr.Progress(track_tqdm=True)
    ):

    generator = torch.Generator(device).manual_seed(seed)
    
    with torch_inference_mode():
        pipe = pipeline_mgr.initialize_pipeline(
            model_id, 
            controlnet_models.get(cn_mode, controlnet_models['edge_detection'])
        )
        
        if cn_enable and not cn_image:
            raise gr.Error("ControlNet enabled but no image provided!")

        if ip_enable and not ip_image:
            raise gr.Error("IP-Adapter enabled but no image provided!")
        
        prompt_emb, negative_emb = process_embeddings(
            prompt, 
            negative_prompt, 
            pipe.tokenizer, 
            pipe.text_encoder
        )
        
        params = {
            'prompt_embeds': prompt_emb,
            'negative_prompt_embeds': negative_emb,
            'guidance_scale': guidance_scale,
            'num_inference_steps': num_inference_steps,
            'width': width,
            'height': height,
            'generator': generator,
            'cross_attention_kwargs': {"scale": lora_scale},
        }
        
        if cn_enable:
            params['image'] = process_control_image(
                cn_image,
                cn_mode,
                pipeline_mgr.get_hed_detector()
            )
            params['controlnet_conditioning_scale'] = float(cn_strength)
        else:
            params['image'] = torch.zeros((1, 3, 512, 512)).to(device)  # заглушка, чтобы pipeline не падал
            params['controlnet_conditioning_scale'] = 0.0
            
        if ip_enable:
            pipe.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=IP_ADAPTER_WEIGHT_NAME)
            params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
            pipe.set_ip_adapter_scale(ip_scale)
            
        pipe.fuse_lora(lora_scale=lora_scale)
        
        return pipe(**params).images[0]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# ⚽️ Football Logo Generator")
        
        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id like 'stable-diffusion-v1-5/stable-diffusion-v1-5'",
                value=model_id_default
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
        )

        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=7.0,
            )

        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.5,
            )

        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=20,
            )

        # Секция Control Net
        cn_enable = gr.Checkbox(label="Enable ControlNet")    
        with gr.Column(visible=False) as cn_options:
            with gr.Row():
                cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
                cn_mode = gr.Dropdown(
                    choices=["edge_detection", "scribble"],
                    value="edge_detection",
                    label="Work regime",
                    interactive=True,
                )
            cn_image = gr.Image(type="filepath", label="Control image")

        cn_enable.change(
            lambda x: gr.update(visible=x),
            inputs=cn_enable,
            outputs=cn_options
        )
        
        # Секция IP-Adapter
        ip_enable = gr.Checkbox(label="Enable IP-Adapter")
        with gr.Column(visible=False) as ip_options:
            ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
            ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)

        ip_enable.change(
            lambda x: gr.update(visible=x),
            inputs=ip_enable,
            outputs=ip_options
        )

        with gr.Accordion("Optional Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

        run_button = gr.Button("Run", scale=1, variant="primary")
        result = gr.Image(label="Result", show_label=False)
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            num_inference_steps,
            model_id,
            seed,
            guidance_scale,
            lora_scale,
            cn_enable,
            cn_strength,
            cn_mode,
            cn_image,
            ip_enable,
            ip_scale,
            ip_image
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()