Spaces:
Running
Running
File size: 10,661 Bytes
863f08e 5f73f5c 863f08e 7bcd902 8a52ce7 6f1c30f 8a52ce7 7bcd902 f3f96df 2b9a58e f3f96df 7bcd902 8a52ce7 7bcd902 8a52ce7 7bcd902 8a52ce7 7bcd902 f3f96df 7bcd902 f3f96df 8a52ce7 7bcd902 f3f96df 7bcd902 f3f96df b8002e7 2b9a58e b8002e7 8a52ce7 7bcd902 b8002e7 f3f96df 7bcd902 b8002e7 7bcd902 b8002e7 7bcd902 b8002e7 7bcd902 b8002e7 67e0937 7bcd902 b8002e7 7bcd902 b8002e7 7bcd902 c1e556a 96bf16a e8401d5 7bcd902 b8002e7 7bcd902 b8002e7 7bcd902 b8002e7 7bcd902 8a52ce7 c6ed7d9 7575df7 863413c c6ed7d9 2b9a58e c6ed7d9 f3f96df dcd37d2 f3f96df 863413c c6ed7d9 863413c c6ed7d9 863f08e c6ed7d9 f3f96df c6ed7d9 863f08e c6ed7d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from peft import PeftModel, LoraConfig
from controlnet_aux import HEDdetector
from PIL import Image
import cv2 as cv
import os
from functools import lru_cache
from contextlib import contextmanager
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
IP_ADAPTER = 'h94/IP-Adapter'
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
class PipelineManager:
def __init__(self):
self.pipe = None
self.current_model = None
self.controlnet_cache = {}
self.hed = None
@lru_cache(maxsize=2)
def get_controlnet(self, model_name: str) -> ControlNetModel:
if model_name not in self.controlnet_cache:
self.controlnet_cache[model_name] = ControlNetModel.from_pretrained(
model_name,
cache_dir="./models_cache",
torch_dtype=torch_dtype
).to(device)
return self.controlnet_cache[model_name]
def get_hed_detector(self):
if self.hed is None:
self.hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
return self.hed
def initialize_pipeline(self, model_id, controlnet_model):
controlnet = self.get_controlnet(controlnet_model)
if not self.pipe or model_id != self.current_model:
self.pipe = self.create_pipeline(model_id, controlnet)
self.current_model = model_id
return self.pipe
def create_pipeline(self, model_id, controlnet):
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
controlnet=controlnet,
cache_dir="./models_cache"
).to(device)
if os.path.exists('./lora_logos'):
pipe = self.load_lora_adapters(pipe)
return pipe
def load_lora_adapters(self, pipe):
unet_dir = os.path.join('./lora_logos', "unet")
text_encoder_dir = os.path.join('./lora_logos', "text_encoder")
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_dir, adapter_name="default")
if os.path.exists(text_encoder_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_dir)
return pipe.to(device)
@contextmanager
def torch_inference_mode():
with torch.inference_mode(), torch.autocast(device.type):
yield
def process_embeddings(prompt, negative_prompt, tokenizer, text_encoder):
def process_text(text):
tokens = tokenizer(text, return_tensors="pt", truncation=False).input_ids
chunks = [tokens[:, i:i+77].to(device) for i in range(0, tokens.size(1), 77)]
return torch.cat([text_encoder(chunk)[0] for chunk in chunks], dim=1)
prompt_emb = process_text(prompt)
negative_emb = process_text(negative_prompt)
max_len = max(prompt_emb.size(1), negative_emb.size(1))
return (
torch.nn.functional.pad(prompt_emb, (0, 0, 0, max_len - prompt_emb.size(1))),
torch.nn.functional.pad(negative_emb, (0, 0, 0, max_len - negative_emb.size(1)))
)
def process_control_image(image_path: str, processor: str, hed_detector) -> Image:
image = load_image(image_path).convert('RGB')
if processor == 'edge_detection':
edges = cv.Canny(np.array(image), 80, 160)
return Image.fromarray(np.repeat(edges[:, :, None], 3, axis=2))
if processor == 'scribble':
scribble = hed_detector(image)
processed = cv.medianBlur(np.array(scribble), 3)
return Image.fromarray(cv.convertScaleAbs(processed, alpha=1.5))
pipeline_mgr = PipelineManager()
controlnet_models = {
"edge_detection": "lllyasviel/sd-controlnet-canny",
"scribble": "lllyasviel/sd-controlnet-scribble"
}
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model_id='stable-diffusion-v1-5/stable-diffusion-v1-5',
seed=42,
guidance_scale=7.0,
lora_scale=0.5,
cn_enable=False,
cn_strength=0.0,
cn_mode='edge_detection',
cn_image=None,
ip_enable=False,
ip_scale=0.5,
ip_image=None,
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
with torch_inference_mode():
pipe = pipeline_mgr.initialize_pipeline(
model_id,
controlnet_models.get(cn_mode, controlnet_models['edge_detection'])
)
if cn_enable and not cn_image:
raise gr.Error("ControlNet enabled but no image provided!")
if ip_enable and not ip_image:
raise gr.Error("IP-Adapter enabled but no image provided!")
prompt_emb, negative_emb = process_embeddings(
prompt,
negative_prompt,
pipe.tokenizer,
pipe.text_encoder
)
params = {
'prompt_embeds': prompt_emb,
'negative_prompt_embeds': negative_emb,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
'cross_attention_kwargs': {"scale": lora_scale},
}
if cn_enable:
params['image'] = process_control_image(
cn_image,
cn_mode,
pipeline_mgr.get_hed_detector()
)
params['controlnet_conditioning_scale'] = float(cn_strength)
else:
params['image'] = torch.zeros((1, 3, 512, 512)).to(device) # заглушка, чтобы pipeline не падал
params['controlnet_conditioning_scale'] = 0.0
if ip_enable:
pipe.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=IP_ADAPTER_WEIGHT_NAME)
params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
pipe.set_ip_adapter_scale(ip_scale)
pipe.fuse_lora(lora_scale=lora_scale)
return pipe(**params).images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# ⚽️ Football Logo Generator")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'stable-diffusion-v1-5/stable-diffusion-v1-5'",
value=model_id_default
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
# Секция Control Net
cn_enable = gr.Checkbox(label="Enable ControlNet")
with gr.Column(visible=False) as cn_options:
with gr.Row():
cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
cn_mode = gr.Dropdown(
choices=["edge_detection", "scribble"],
value="edge_detection",
label="Work regime",
interactive=True,
)
cn_image = gr.Image(type="filepath", label="Control image")
cn_enable.change(
lambda x: gr.update(visible=x),
inputs=cn_enable,
outputs=cn_options
)
# Секция IP-Adapter
ip_enable = gr.Checkbox(label="Enable IP-Adapter")
with gr.Column(visible=False) as ip_options:
ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)
ip_enable.change(
lambda x: gr.update(visible=x),
inputs=ip_enable,
outputs=ip_options
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
cn_enable,
cn_strength,
cn_mode,
cn_image,
ip_enable,
ip_scale,
ip_image
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |