deprem-ocr / ocr /ppocr /data /imaug /rec_img_aug.py
Goodsea's picture
paddleocr
fc8c192
raw
history blame
19 kB
import math
import random
import cv2
import numpy as np
from PIL import Image
from .text_image_aug import tia_distort, tia_perspective, tia_stretch
class RecAug(object):
def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
self.use_tia = use_tia
self.aug_prob = aug_prob
def __call__(self, data):
img = data["image"]
img = warp(img, 10, self.use_tia, self.aug_prob)
data["image"] = img
return data
class RecConAug(object):
def __init__(
self,
prob=0.5,
image_shape=(32, 320, 3),
max_text_length=25,
ext_data_num=1,
**kwargs
):
self.ext_data_num = ext_data_num
self.prob = prob
self.max_text_length = max_text_length
self.image_shape = image_shape
self.max_wh_ratio = self.image_shape[1] / self.image_shape[0]
def merge_ext_data(self, data, ext_data):
ori_w = round(
data["image"].shape[1] / data["image"].shape[0] * self.image_shape[0]
)
ext_w = round(
ext_data["image"].shape[1]
/ ext_data["image"].shape[0]
* self.image_shape[0]
)
data["image"] = cv2.resize(data["image"], (ori_w, self.image_shape[0]))
ext_data["image"] = cv2.resize(ext_data["image"], (ext_w, self.image_shape[0]))
data["image"] = np.concatenate([data["image"], ext_data["image"]], axis=1)
data["label"] += ext_data["label"]
return data
def __call__(self, data):
rnd_num = random.random()
if rnd_num > self.prob:
return data
for idx, ext_data in enumerate(data["ext_data"]):
if len(data["label"]) + len(ext_data["label"]) > self.max_text_length:
break
concat_ratio = (
data["image"].shape[1] / data["image"].shape[0]
+ ext_data["image"].shape[1] / ext_data["image"].shape[0]
)
if concat_ratio > self.max_wh_ratio:
break
data = self.merge_ext_data(data, ext_data)
data.pop("ext_data")
return data
class ClsResizeImg(object):
def __init__(self, image_shape, **kwargs):
self.image_shape = image_shape
def __call__(self, data):
img = data["image"]
norm_img, _ = resize_norm_img(img, self.image_shape)
data["image"] = norm_img
return data
class NRTRRecResizeImg(object):
def __init__(self, image_shape, resize_type, padding=False, **kwargs):
self.image_shape = image_shape
self.resize_type = resize_type
self.padding = padding
def __call__(self, data):
img = data["image"]
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
image_shape = self.image_shape
if self.padding:
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
norm_img = np.expand_dims(resized_image, -1)
norm_img = norm_img.transpose((2, 0, 1))
resized_image = norm_img.astype(np.float32) / 128.0 - 1.0
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
data["image"] = padding_im
return data
if self.resize_type == "PIL":
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
img = np.array(img)
if self.resize_type == "OpenCV":
img = cv2.resize(img, self.image_shape)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
data["image"] = norm_img.astype(np.float32) / 128.0 - 1.0
return data
class RecResizeImg(object):
def __init__(
self,
image_shape,
infer_mode=False,
character_dict_path="./ppocr/utils/ppocr_keys_v1.txt",
padding=True,
**kwargs
):
self.image_shape = image_shape
self.infer_mode = infer_mode
self.character_dict_path = character_dict_path
self.padding = padding
def __call__(self, data):
img = data["image"]
if self.infer_mode and self.character_dict_path is not None:
norm_img, valid_ratio = resize_norm_img_chinese(img, self.image_shape)
else:
norm_img, valid_ratio = resize_norm_img(img, self.image_shape, self.padding)
data["image"] = norm_img
data["valid_ratio"] = valid_ratio
return data
class SRNRecResizeImg(object):
def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
self.image_shape = image_shape
self.num_heads = num_heads
self.max_text_length = max_text_length
def __call__(self, data):
img = data["image"]
norm_img = resize_norm_img_srn(img, self.image_shape)
data["image"] = norm_img
[
encoder_word_pos,
gsrm_word_pos,
gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2,
] = srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
data["encoder_word_pos"] = encoder_word_pos
data["gsrm_word_pos"] = gsrm_word_pos
data["gsrm_slf_attn_bias1"] = gsrm_slf_attn_bias1
data["gsrm_slf_attn_bias2"] = gsrm_slf_attn_bias2
return data
class SARRecResizeImg(object):
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
self.width_downsample_ratio = width_downsample_ratio
def __call__(self, data):
img = data["image"]
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio
)
data["image"] = norm_img
data["resized_shape"] = resize_shape
data["pad_shape"] = pad_shape
data["valid_ratio"] = valid_ratio
return data
class PRENResizeImg(object):
def __init__(self, image_shape, **kwargs):
"""
Accroding to original paper's realization, it's a hard resize method here.
So maybe you should optimize it to fit for your task better.
"""
self.dst_h, self.dst_w = image_shape
def __call__(self, data):
img = data["image"]
resized_img = cv2.resize(
img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR
)
resized_img = resized_img.transpose((2, 0, 1)) / 255
resized_img -= 0.5
resized_img /= 0.5
data["image"] = resized_img.astype(np.float32)
return data
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype("float32")
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
def resize_norm_img(img, image_shape, padding=True):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype("float32")
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
return padding_im, valid_ratio
def resize_norm_img_chinese(img, image_shape):
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
max_wh_ratio = imgW * 1.0 / imgH
h, w = img.shape[0], img.shape[1]
ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, ratio)
imgW = int(imgH * max_wh_ratio)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype("float32")
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
return padding_im, valid_ratio
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0 : img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = (
np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype("int64")
)
gsrm_word_pos = (
np.array(range(0, max_text_length))
.reshape((max_text_length, 1))
.astype("int64")
)
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[1, max_text_length, max_text_length]
)
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [num_heads, 1, 1]) * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[1, max_text_length, max_text_length]
)
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [num_heads, 1, 1]) * [-1e9]
return [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2]
def flag():
"""
flag
"""
return 1 if random.random() > 0.5000001 else -1
def cvtColor(img):
"""
cvtColor
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
delta = 0.001 * random.random() * flag()
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return new_img
def blur(img):
"""
blur
"""
h, w, _ = img.shape
if h > 10 and w > 10:
return cv2.GaussianBlur(img, (5, 5), 1)
else:
return img
def jitter(img):
"""
jitter
"""
w, h, _ = img.shape
if h > 10 and w > 10:
thres = min(w, h)
s = int(random.random() * thres * 0.01)
src_img = img.copy()
for i in range(s):
img[i:, i:, :] = src_img[: w - i, : h - i, :]
return img
else:
return img
def add_gasuss_noise(image, mean=0, var=0.1):
"""
Gasuss noise
"""
noise = np.random.normal(mean, var**0.5, image.shape)
out = image + 0.5 * noise
out = np.clip(out, 0, 255)
out = np.uint8(out)
return out
def get_crop(image):
"""
random crop
"""
h, w, _ = image.shape
top_min = 1
top_max = 8
top_crop = int(random.randint(top_min, top_max))
top_crop = min(top_crop, h - 1)
crop_img = image.copy()
ratio = random.randint(0, 1)
if ratio:
crop_img = crop_img[top_crop:h, :, :]
else:
crop_img = crop_img[0 : h - top_crop, :, :]
return crop_img
class Config:
"""
Config
"""
def __init__(self, use_tia):
self.anglex = random.random() * 30
self.angley = random.random() * 15
self.anglez = random.random() * 10
self.fov = 42
self.r = 0
self.shearx = random.random() * 0.3
self.sheary = random.random() * 0.05
self.borderMode = cv2.BORDER_REPLICATE
self.use_tia = use_tia
def make(self, w, h, ang):
"""
make
"""
self.anglex = random.random() * 5 * flag()
self.angley = random.random() * 5 * flag()
self.anglez = -1 * random.random() * int(ang) * flag()
self.fov = 42
self.r = 0
self.shearx = 0
self.sheary = 0
self.borderMode = cv2.BORDER_REPLICATE
self.w = w
self.h = h
self.perspective = self.use_tia
self.stretch = self.use_tia
self.distort = self.use_tia
self.crop = True
self.affine = False
self.reverse = True
self.noise = True
self.jitter = True
self.blur = True
self.color = True
def rad(x):
"""
rad
"""
return x * np.pi / 180
def get_warpR(config):
"""
get_warpR
"""
anglex, angley, anglez, fov, w, h, r = (
config.anglex,
config.angley,
config.anglez,
config.fov,
config.w,
config.h,
config.r,
)
if w > 69 and w < 112:
anglex = anglex * 1.5
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
# Homogeneous coordinate transformation matrix
rx = np.array(
[
[1, 0, 0, 0],
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0],
[
0,
-np.sin(rad(anglex)),
np.cos(rad(anglex)),
0,
],
[0, 0, 0, 1],
],
np.float32,
)
ry = np.array(
[
[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
[0, 1, 0, 0],
[
-np.sin(rad(angley)),
0,
np.cos(rad(angley)),
0,
],
[0, 0, 0, 1],
],
np.float32,
)
rz = np.array(
[
[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
],
np.float32,
)
r = rx.dot(ry).dot(rz)
# generate 4 points
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
p3 = np.array([0, h, 0, 0], np.float32) - pcenter
p4 = np.array([w, h, 0, 0], np.float32) - pcenter
dst1 = r.dot(p1)
dst2 = r.dot(p2)
dst3 = r.dot(p3)
dst4 = r.dot(p4)
list_dst = np.array([dst1, dst2, dst3, dst4])
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
dst = np.zeros((4, 2), np.float32)
# Project onto the image plane
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
warpR = cv2.getPerspectiveTransform(org, dst)
dst1, dst2, dst3, dst4 = dst
r1 = int(min(dst1[1], dst2[1]))
r2 = int(max(dst3[1], dst4[1]))
c1 = int(min(dst1[0], dst3[0]))
c2 = int(max(dst2[0], dst4[0]))
try:
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
dx = -c1
dy = -r1
T1 = np.float32([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0 / ratio]])
ret = T1.dot(warpR)
except:
ratio = 1.0
T1 = np.float32([[1.0, 0, 0], [0, 1.0, 0], [0, 0, 1.0]])
ret = T1
return ret, (-r1, -c1), ratio, dst
def get_warpAffine(config):
"""
get_warpAffine
"""
anglez = config.anglez
rz = np.array(
[
[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0],
],
np.float32,
)
return rz
def warp(img, ang, use_tia=True, prob=0.4):
"""
warp
"""
h, w, _ = img.shape
config = Config(use_tia=use_tia)
config.make(w, h, ang)
new_img = img
if config.distort:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = tia_distort(new_img, random.randint(3, 6))
if config.stretch:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = tia_stretch(new_img, random.randint(3, 6))
if config.perspective:
if random.random() <= prob:
new_img = tia_perspective(new_img)
if config.crop:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = get_crop(new_img)
if config.blur:
if random.random() <= prob:
new_img = blur(new_img)
if config.color:
if random.random() <= prob:
new_img = cvtColor(new_img)
if config.jitter:
new_img = jitter(new_img)
if config.noise:
if random.random() <= prob:
new_img = add_gasuss_noise(new_img)
if config.reverse:
if random.random() <= prob:
new_img = 255 - new_img
return new_img