File size: 18,969 Bytes
fc8c192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import math
import random

import cv2
import numpy as np
from PIL import Image

from .text_image_aug import tia_distort, tia_perspective, tia_stretch


class RecAug(object):
    def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
        self.use_tia = use_tia
        self.aug_prob = aug_prob

    def __call__(self, data):
        img = data["image"]
        img = warp(img, 10, self.use_tia, self.aug_prob)
        data["image"] = img
        return data


class RecConAug(object):
    def __init__(
        self,
        prob=0.5,
        image_shape=(32, 320, 3),
        max_text_length=25,
        ext_data_num=1,
        **kwargs
    ):
        self.ext_data_num = ext_data_num
        self.prob = prob
        self.max_text_length = max_text_length
        self.image_shape = image_shape
        self.max_wh_ratio = self.image_shape[1] / self.image_shape[0]

    def merge_ext_data(self, data, ext_data):
        ori_w = round(
            data["image"].shape[1] / data["image"].shape[0] * self.image_shape[0]
        )
        ext_w = round(
            ext_data["image"].shape[1]
            / ext_data["image"].shape[0]
            * self.image_shape[0]
        )
        data["image"] = cv2.resize(data["image"], (ori_w, self.image_shape[0]))
        ext_data["image"] = cv2.resize(ext_data["image"], (ext_w, self.image_shape[0]))
        data["image"] = np.concatenate([data["image"], ext_data["image"]], axis=1)
        data["label"] += ext_data["label"]
        return data

    def __call__(self, data):
        rnd_num = random.random()
        if rnd_num > self.prob:
            return data
        for idx, ext_data in enumerate(data["ext_data"]):
            if len(data["label"]) + len(ext_data["label"]) > self.max_text_length:
                break
            concat_ratio = (
                data["image"].shape[1] / data["image"].shape[0]
                + ext_data["image"].shape[1] / ext_data["image"].shape[0]
            )
            if concat_ratio > self.max_wh_ratio:
                break
            data = self.merge_ext_data(data, ext_data)
        data.pop("ext_data")
        return data


class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data["image"]
        norm_img, _ = resize_norm_img(img, self.image_shape)
        data["image"] = norm_img
        return data


class NRTRRecResizeImg(object):
    def __init__(self, image_shape, resize_type, padding=False, **kwargs):
        self.image_shape = image_shape
        self.resize_type = resize_type
        self.padding = padding

    def __call__(self, data):
        img = data["image"]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        image_shape = self.image_shape
        if self.padding:
            imgC, imgH, imgW = image_shape
            # todo: change to 0 and modified image shape
            h = img.shape[0]
            w = img.shape[1]
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
            norm_img = np.expand_dims(resized_image, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            resized_image = norm_img.astype(np.float32) / 128.0 - 1.0
            padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            padding_im[:, :, 0:resized_w] = resized_image
            data["image"] = padding_im
            return data
        if self.resize_type == "PIL":
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
            img = np.array(img)
        if self.resize_type == "OpenCV":
            img = cv2.resize(img, self.image_shape)
        norm_img = np.expand_dims(img, -1)
        norm_img = norm_img.transpose((2, 0, 1))
        data["image"] = norm_img.astype(np.float32) / 128.0 - 1.0
        return data


class RecResizeImg(object):
    def __init__(
        self,
        image_shape,
        infer_mode=False,
        character_dict_path="./ppocr/utils/ppocr_keys_v1.txt",
        padding=True,
        **kwargs
    ):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
        self.character_dict_path = character_dict_path
        self.padding = padding

    def __call__(self, data):
        img = data["image"]
        if self.infer_mode and self.character_dict_path is not None:
            norm_img, valid_ratio = resize_norm_img_chinese(img, self.image_shape)
        else:
            norm_img, valid_ratio = resize_norm_img(img, self.image_shape, self.padding)
        data["image"] = norm_img
        data["valid_ratio"] = valid_ratio
        return data


class SRNRecResizeImg(object):
    def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
        self.image_shape = image_shape
        self.num_heads = num_heads
        self.max_text_length = max_text_length

    def __call__(self, data):
        img = data["image"]
        norm_img = resize_norm_img_srn(img, self.image_shape)
        data["image"] = norm_img
        [
            encoder_word_pos,
            gsrm_word_pos,
            gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2,
        ] = srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)

        data["encoder_word_pos"] = encoder_word_pos
        data["gsrm_word_pos"] = gsrm_word_pos
        data["gsrm_slf_attn_bias1"] = gsrm_slf_attn_bias1
        data["gsrm_slf_attn_bias2"] = gsrm_slf_attn_bias2
        return data


class SARRecResizeImg(object):
    def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
        self.image_shape = image_shape
        self.width_downsample_ratio = width_downsample_ratio

    def __call__(self, data):
        img = data["image"]
        norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
            img, self.image_shape, self.width_downsample_ratio
        )
        data["image"] = norm_img
        data["resized_shape"] = resize_shape
        data["pad_shape"] = pad_shape
        data["valid_ratio"] = valid_ratio
        return data


class PRENResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        """
        Accroding to original paper's realization, it's a hard resize method here.
        So maybe you should optimize it to fit for your task better.
        """
        self.dst_h, self.dst_w = image_shape

    def __call__(self, data):
        img = data["image"]
        resized_img = cv2.resize(
            img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR
        )
        resized_img = resized_img.transpose((2, 0, 1)) / 255
        resized_img -= 0.5
        resized_img /= 0.5
        data["image"] = resized_img.astype(np.float32)
        return data


def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
    imgC, imgH, imgW_min, imgW_max = image_shape
    h = img.shape[0]
    w = img.shape[1]
    valid_ratio = 1.0
    # make sure new_width is an integral multiple of width_divisor.
    width_divisor = int(1 / width_downsample_ratio)
    # resize
    ratio = w / float(h)
    resize_w = math.ceil(imgH * ratio)
    if resize_w % width_divisor != 0:
        resize_w = round(resize_w / width_divisor) * width_divisor
    if imgW_min is not None:
        resize_w = max(imgW_min, resize_w)
    if imgW_max is not None:
        valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
        resize_w = min(imgW_max, resize_w)
    resized_image = cv2.resize(img, (resize_w, imgH))
    resized_image = resized_image.astype("float32")
    # norm
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resize_shape = resized_image.shape
    padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
    padding_im[:, :, 0:resize_w] = resized_image
    pad_shape = padding_im.shape

    return padding_im, resize_shape, pad_shape, valid_ratio


def resize_norm_img(img, image_shape, padding=True):
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    if not padding:
        resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_w = imgW
    else:
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype("float32")
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio


def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
    max_wh_ratio = imgW * 1.0 / imgH
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(imgH * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype("float32")
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio


def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0 : img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)


def srn_other_inputs(image_shape, num_heads, max_text_length):

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

    encoder_word_pos = (
        np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype("int64")
    )
    gsrm_word_pos = (
        np.array(range(0, max_text_length))
        .reshape((max_text_length, 1))
        .astype("int64")
    )

    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [1, max_text_length, max_text_length]
    )
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [num_heads, 1, 1]) * [-1e9]

    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [1, max_text_length, max_text_length]
    )
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [num_heads, 1, 1]) * [-1e9]

    return [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2]


def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


def jitter(img):
    """
    jitter
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[: w - i, : h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
    """
    Gasuss noise
    """

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
    top_crop = min(top_crop, h - 1)
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0 : h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

    def __init__(self, use_tia):
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE
        self.use_tia = use_tia

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

        self.perspective = self.use_tia
        self.stretch = self.use_tia
        self.distort = self.use_tia

        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
        self.jitter = True
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = (
        config.anglex,
        config.angley,
        config.anglez,
        config.fov,
        config.w,
        config.h,
        config.r,
    )
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array(
        [
            [1, 0, 0, 0],
            [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0],
            [
                0,
                -np.sin(rad(anglex)),
                np.cos(rad(anglex)),
                0,
            ],
            [0, 0, 0, 1],
        ],
        np.float32,
    )
    ry = np.array(
        [
            [np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
            [0, 1, 0, 0],
            [
                -np.sin(rad(angley)),
                0,
                np.cos(rad(angley)),
                0,
            ],
            [0, 0, 0, 1],
        ],
        np.float32,
    )
    rz = np.array(
        [
            [np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
            [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1],
        ],
        np.float32,
    )
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
    list_dst = np.array([dst1, dst2, dst3, dst4])
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1.0, 0, 0], [0, 1.0, 0], [0, 0, 1.0]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array(
        [
            [np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
            [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0],
        ],
        np.float32,
    )
    return rz


def warp(img, ang, use_tia=True, prob=0.4):
    """
    warp
    """
    h, w, _ = img.shape
    config = Config(use_tia=use_tia)
    config.make(w, h, ang)
    new_img = img

    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_distort(new_img, random.randint(3, 6))

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_stretch(new_img, random.randint(3, 6))

    if config.perspective:
        if random.random() <= prob:
            new_img = tia_perspective(new_img)

    if config.crop:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = get_crop(new_img)

    if config.blur:
        if random.random() <= prob:
            new_img = blur(new_img)
    if config.color:
        if random.random() <= prob:
            new_img = cvtColor(new_img)
    if config.jitter:
        new_img = jitter(new_img)
    if config.noise:
        if random.random() <= prob:
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
        if random.random() <= prob:
            new_img = 255 - new_img
    return new_img