File size: 17,169 Bytes
0d7d0ea
 
899f7e3
0d7d0ea
 
 
899f7e3
ed579ca
ac04228
0d7d0ea
c94c81c
899f7e3
 
 
 
 
f547662
899f7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d7d0ea
899f7e3
 
 
0d7d0ea
899f7e3
 
 
 
 
0d7d0ea
899f7e3
 
 
 
 
 
 
 
 
 
 
 
 
0d7d0ea
899f7e3
0d7d0ea
fcb1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94c81c
0d7d0ea
 
c94c81c
0d7d0ea
 
 
899f7e3
c94c81c
0d7d0ea
 
c94c81c
899f7e3
c94c81c
7dd7fc1
c94c81c
a8c313a
c94c81c
0d7d0ea
c94c81c
899f7e3
 
7dd7fc1
c94c81c
 
899f7e3
7dd7fc1
c94c81c
 
899f7e3
7dd7fc1
c94c81c
 
899f7e3
c94c81c
 
 
899f7e3
c94c81c
899f7e3
7dd7fc1
0d7d0ea
c94c81c
 
 
 
 
7dd7fc1
c94c81c
7dd7fc1
 
c94c81c
 
 
7dd7fc1
c94c81c
 
7dd7fc1
c94c81c
 
0d7d0ea
 
c94c81c
 
 
 
 
 
 
 
 
7dd7fc1
c94c81c
 
7dd7fc1
c94c81c
 
 
 
 
 
 
a8c313a
c94c81c
 
 
 
 
 
 
 
a8c313a
c94c81c
 
 
 
 
 
 
 
 
 
 
0d7d0ea
899f7e3
 
0d7d0ea
899f7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d7d0ea
0986c90
 
 
0d7d0ea
0986c90
0d7d0ea
0986c90
 
 
 
 
 
 
 
 
 
 
fcb1801
0986c90
899f7e3
0986c90
 
899f7e3
0986c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed579ca
ac04228
ed579ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db489fb
8675253
ac04228
 
 
993bab7
afe8efe
 
 
 
 
 
ac04228
 
db489fb
8675253
 
 
 
 
 
 
 
 
 
 
 
 
 
0d7d0ea
4d549b2
 
ac04228
 
4d549b2
 
ac04228
 
 
 
8675253
 
ac04228
4d549b2
 
 
 
 
 
 
db489fb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Any
import streamlit as st
import streamlit.components.v1 as components

# --- Data Processing Class ---
class DataProcessor:
    def __init__(self):
        self.data = None
        self.numeric_columns = []
        self.categorical_columns = []
        
        self.date_columns = []
    
    def load_data(self, file) -> bool:
        try:
            self.data = pd.read_csv(file)
            self._classify_columns()
            return True
        except Exception as e:
            st.error(f"Error loading data: {str(e)}")
            return False
    
    def _classify_columns(self):
        for col in self.data.columns:
            if pd.api.types.is_numeric_dtype(self.data[col]):
                self.numeric_columns.append(col)
            elif pd.api.types.is_datetime64_any_dtype(self.data[col]):
                self.date_columns.append(col)
            else:
                try:
                    pd.to_datetime(self.data[col])
                    self.date_columns.append(col)
                except:
                    self.categorical_columns.append(col)

    def get_basic_stats(self) -> Dict[str, Any]:
        if self.data is None:
            return {}
        
        stats = {
            'summary': self.data[self.numeric_columns].describe(),
            'missing_values': self.data.isnull().sum(),
            'row_count': len(self.data),
            'column_count': len(self.data.columns)
        }
        return stats

    def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure:
        if chart_type == "Line Plot":
            fig = px.line(self.data, x=x_col, y=y_col, color=color_col)
        elif chart_type == "Bar Plot":
            fig = px.bar(self.data, x=x_col, y=y_col, color=color_col)
        elif chart_type == "Scatter Plot":
            fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col)
        elif chart_type == "Box Plot":
            fig = px.box(self.data, x=x_col, y=y_col, color=color_col)
        else:
            fig = px.histogram(self.data, x=x_col, color=color_col)
        
        return fig

class BrainstormManager:
    def __init__(self):
        if 'products' not in st.session_state:
            st.session_state.products = {}
        
    def generate_product_form(self) -> Dict:
        with st.form("product_form"):
            basic_info = {
                "name": st.text_input("Product Name"),
                "category": st.selectbox("Category", ["Digital", "Physical", "Service"]),
                "description": st.text_area("Description"),
                "target_audience": st.multiselect("Target Audience", 
                    ["Students", "Professionals", "Businesses", "Seniors", "Youth"]),
                "price_range": st.slider("Price Range ($)", 0, 1000, (50, 200)),
                "launch_date": st.date_input("Expected Launch Date")
            }
            
            st.subheader("Market Analysis")
            market_analysis = {
                "competitors": st.text_area("Main Competitors (one per line)"),
                "unique_features": st.text_area("Unique Selling Points"),
                "market_size": st.selectbox("Market Size", 
                    ["Small", "Medium", "Large", "Enterprise"]),
                "growth_potential": st.slider("Growth Potential", 1, 10)
            }
            
            submitted = st.form_submit_button("Save Product")
            return basic_info, market_analysis, submitted

    def analyze_product(self, product_data: Dict) -> Dict:
        insights = {
            "market_opportunity": self._calculate_opportunity_score(product_data),
            "suggested_price": self._suggest_price(product_data),
            "risk_factors": self._identify_risks(product_data),
            "next_steps": self._generate_next_steps(product_data)
        }
        return insights

    def _calculate_opportunity_score(self, data: Dict) -> int:
        score = 0
        if data.get("market_size") == "Large":
            score += 3
        if len(data.get("target_audience", [])) >= 2:
            score += 2
        if data.get("growth_potential", 0) > 7:
            score += 2
        return min(score, 10)

    def _suggest_price(self, data: Dict) -> float:
        base_price = sum(data.get("price_range", (0, 0))) / 2
        if data.get("market_size") == "Enterprise":
            base_price *= 1.5
        return round(base_price, 2)

    def _identify_risks(self, data: Dict) -> List[str]:
        risks = []
        if data.get("competitors"):
            risks.append("Competitive market - differentiation crucial")
        if len(data.get("target_audience", [])) < 2:
            risks.append("Narrow target audience - consider expansion")
        return risks

    def _generate_next_steps(self, data: Dict) -> List[str]:
        steps = [
            "Create detailed product specification",
            "Develop MVP timeline",
            "Plan marketing strategy"
        ]
        if data.get("market_size") == "Enterprise":
            steps.append("Prepare enterprise sales strategy")
        return steps

# --- Sample Data Generation ---
def generate_sample_data():
    dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
    return pd.DataFrame({
        'Date': dates,
        'Revenue': np.random.normal(1000, 100, len(dates)),
        'Users': np.random.randint(100, 200, len(dates)),
        'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
        'Category': np.random.choice(['A', 'B', 'C'], len(dates))
    })

# --- Page Rendering Functions ---
def render_dashboard():
    st.header("πŸ“Š Comprehensive Business Performance Dashboard")
    
    # Generate sample data with more complex structure
    data = generate_sample_data()
    data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
    
    # Top-level KPI Section
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Total Revenue", 
                  f"${data['Revenue'].sum():,.2f}", 
                  delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
    with col2:
        st.metric("Total Users", 
                  f"{data['Users'].sum():,}", 
                  delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
    with col3:
        st.metric("Avg Engagement", 
                  f"{data['Engagement'].mean():.2%}", 
                  delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
    with col4:
        st.metric("Profit Margin", 
                  f"{data['Profit_Margin'].mean():.2%}", 
                  delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
    
    # Visualization Grid
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Revenue & Profit Trends")
        fig_revenue = go.Figure()
        fig_revenue.add_trace(go.Scatter(
            x=data['Date'], 
            y=data['Revenue'], 
            mode='lines', 
            name='Revenue',
            line=dict(color='blue')
        ))
        fig_revenue.add_trace(go.Scatter(
            x=data['Date'], 
            y=data['Profit_Margin'], 
            mode='lines', 
            name='Profit Margin',
            line=dict(color='green')
        ))
        fig_revenue.update_layout(height=350)
        st.plotly_chart(fig_revenue, use_container_width=True)
    
    with col2:
        st.subheader("User Engagement Analysis")
        fig_engagement = px.scatter(
            data, 
            x='Users', 
            y='Engagement', 
            color='Category', 
            size='Revenue',
            hover_data=['Date'],
            title='User Engagement Dynamics'
        )
        fig_engagement.update_layout(height=350)
        st.plotly_chart(fig_engagement, use_container_width=True)
    
    # Category Performance
    st.subheader("Category Performance Breakdown")
    category_performance = data.groupby('Category').agg({
        'Revenue': 'sum',
        'Users': 'sum',
        'Engagement': 'mean'
    }).reset_index()
    
    fig_category = px.bar(
        category_performance, 
        x='Category', 
        y='Revenue', 
        color='Engagement',
        title='Revenue by Category with Engagement Overlay'
    )
    st.plotly_chart(fig_category, use_container_width=True)
    
    # Bottom Summary
    st.subheader("Quick Insights")
    insights_col1, insights_col2 = st.columns(2)
    
    with insights_col1:
        st.metric("Top Performing Category", 
                  category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
    
    with insights_col2:
        st.metric("Highest Engagement Category", 
                  category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])

def render_analytics():
    st.header("πŸ” Data Analytics")
    
    processor = DataProcessor()
    uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
    
    if uploaded_file is not None:
        if processor.load_data(uploaded_file):
            st.success("Data loaded successfully!")
            
            tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
            
            with tabs[0]:
                st.subheader("Data Preview")
                st.dataframe(processor.data.head())
                st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
            
            with tabs[1]:
                st.subheader("Basic Statistics")
                stats = processor.get_basic_stats()
                st.write(stats['summary'])
                
                st.subheader("Missing Values")
                st.write(stats['missing_values'])
            
            with tabs[2]:
                st.subheader("Create Visualization")
                col1, col2, col3 = st.columns(3)
                
                with col1:
                    chart_type = st.selectbox(
                        "Select Chart Type",
                        ["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
                    )
                
                with col2:
                    x_col = st.selectbox("Select X-axis", processor.data.columns)
                
                with col3:
                    y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
                
                color_col = st.selectbox("Select Color Variable (optional)", 
                                       ['None'] + processor.categorical_columns)
                color_col = None if color_col == 'None' else color_col
                
                fig = processor.create_visualization(
                    chart_type,
                    x_col,
                    y_col if y_col else x_col,
                    color_col
                )
                st.plotly_chart(fig, use_container_width=True)
            
            with tabs[3]:
                st.subheader("Column Metrics")
                selected_col = st.selectbox("Select column", processor.numeric_columns)
                
                metrics = {
                    'Mean': processor.data[selected_col].mean(),
                    'Median': processor.data[selected_col].median(),
                    'Std Dev': processor.data[selected_col].std(),
                    'Min': processor.data[selected_col].min(),
                    'Max': processor.data[selected_col].max()
                }
                
                cols = st.columns(len(metrics))
                for col, (metric, value) in zip(cols, metrics.items()):
                    col.metric(metric, f"{value:.2f}")

def render_brainstorm_page():
    st.title("Product Brainstorm Hub")
    manager = BrainstormManager()
    
    action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
    
    if action == "Create New Product":
        basic_info, market_analysis, submitted = manager.generate_product_form()
        
        if submitted:
            product_data = {**basic_info, **market_analysis}
            insights = manager.analyze_product(product_data)
            
            product_id = f"prod_{len(st.session_state.products)}"
            st.session_state.products[product_id] = {
                "data": product_data,
                "insights": insights,
                "created_at": str(datetime.now())
            }
            
            st.success("Product added! View insights in the Products tab.")
    
    else:
        if st.session_state.products:
            for prod_id, product in st.session_state.products.items():
                with st.expander(f"🎯 {product['data']['name']}"):
                    col1, col2 = st.columns(2)
                    
                    with col1:
                        st.subheader("Product Details")
                        st.write(f"Category: {product['data']['category']}")
                        st.write(f"Target: {', '.join(product['data']['target_audience'])}")
                        st.write(f"Description: {product['data']['description']}")
                    
                    with col2:
                        st.subheader("Insights")
                        st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
                        st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
                        
                        st.write("**Risk Factors:**")
                        for risk in product['insights']['risk_factors']:
                            st.write(f"- {risk}")
                        
                        st.write("**Next Steps:**")
                        for step in product['insights']['next_steps']:
                            st.write(f"- {step}")
        else:
            st.info("No products yet. Create one to get started!")




    def generate_response(self, prompt: str, context: list = None) -> str:
        if not self.model or not self.tokenizer:
            return "LLM not initialized. Please check model configuration."
        
        # Prepare conversation context
        if context is None:
            context = []
        
        # Create full prompt with conversation history
        full_prompt = "".join([f"{msg['role']}: {msg['content']}\n" for msg in context])
        full_prompt += f"user: {prompt}\nassistant: "
        
        # Tokenize input
        input_ids = self.tokenizer(full_prompt, return_tensors="pt").input_ids.to(self.model.device)
        
        # Generate response
        try:
            output = self.model.generate(
                input_ids, 
                max_length=500,
                num_return_sequences=1,
                no_repeat_ngram_size=2,
                temperature=0.7,
                top_p=0.9
            )
            
            # Decode response
            response = self.tokenizer.decode(output[0], skip_special_tokens=True)
            
            # Extract only the new part of the response
            response = response[len(full_prompt):].strip()
            
            return response
        except Exception as e:
            return f"Response generation error: {e}"

def render_chat():
    st.header("πŸ’¬AI Business Mentor")
    st.title("πŸ€– Prospira AI Business Mentor")

    iframe_code = """
    <iframe
	src="https://demoorganisation34-vinay.hf.space"
	frameborder="0"
	width="850"
	height="450"
></iframe>

    """
    components.html(iframe_code, height=600)

def render_home():
    st.title("πŸš€ Welcome to Prospira")
    st.subheader("πŸ“Š Data-Driven Solutions for Businesses and Creators")
    st.markdown("""
    **Prospira** empowers businesses and creators to enhance their content, products, and marketing strategies using AI-driven insights.
    
    ### **✨ Key Features**
    - **πŸ“ˆ Performance Analytics:** Real-time insights into business metrics.
    - **πŸ”Ž Competitive Analysis:** Benchmark your business against competitors.
    - **πŸ’‘ Smart Product Ideas:** AI-generated recommendations for future products and content.
    - **🧠 AI Business Mentor:** Personalized AI guidance for strategy and growth.
    Explore how **Prospira** can help optimize your decision-making and drive success! πŸ’‘πŸš€
    """)

def main():
    st.set_page_config(
        page_title="Prospira",
        page_icon="πŸš€",
        layout="centered",
        initial_sidebar_state="expanded"
    )

    # Create a selection box to choose between pages
    page = st.sidebar.radio("Select a page", ["Home", "Dashboard", "Analytics", "Brainstorm", "Chat"])

    if page == "Home":
        render_home()
    elif page == "Dashboard":
        render_dashboard()
    elif page == "Analytics":
        render_analytics()
    elif page == "Brainstorm":
        render_brainstorm_page()
    elif page == "Chat":
        render_chat()

if __name__ == "__main__":
    main()