Spaces:
Running
Running
File size: 17,169 Bytes
0d7d0ea 899f7e3 0d7d0ea 899f7e3 ed579ca ac04228 0d7d0ea c94c81c 899f7e3 f547662 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea fcb1801 c94c81c 0d7d0ea c94c81c 0d7d0ea 899f7e3 c94c81c 0d7d0ea c94c81c 899f7e3 c94c81c 7dd7fc1 c94c81c a8c313a c94c81c 0d7d0ea c94c81c 899f7e3 7dd7fc1 c94c81c 899f7e3 7dd7fc1 c94c81c 899f7e3 7dd7fc1 c94c81c 899f7e3 c94c81c 899f7e3 c94c81c 899f7e3 7dd7fc1 0d7d0ea c94c81c 7dd7fc1 c94c81c 7dd7fc1 c94c81c 7dd7fc1 c94c81c 7dd7fc1 c94c81c 0d7d0ea c94c81c 7dd7fc1 c94c81c 7dd7fc1 c94c81c a8c313a c94c81c a8c313a c94c81c 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 0986c90 0d7d0ea 0986c90 0d7d0ea 0986c90 fcb1801 0986c90 899f7e3 0986c90 899f7e3 0986c90 ed579ca ac04228 ed579ca db489fb 8675253 ac04228 993bab7 afe8efe ac04228 db489fb 8675253 0d7d0ea 4d549b2 ac04228 4d549b2 ac04228 8675253 ac04228 4d549b2 db489fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Any
import streamlit as st
import streamlit.components.v1 as components
# --- Data Processing Class ---
class DataProcessor:
def __init__(self):
self.data = None
self.numeric_columns = []
self.categorical_columns = []
self.date_columns = []
def load_data(self, file) -> bool:
try:
self.data = pd.read_csv(file)
self._classify_columns()
return True
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return False
def _classify_columns(self):
for col in self.data.columns:
if pd.api.types.is_numeric_dtype(self.data[col]):
self.numeric_columns.append(col)
elif pd.api.types.is_datetime64_any_dtype(self.data[col]):
self.date_columns.append(col)
else:
try:
pd.to_datetime(self.data[col])
self.date_columns.append(col)
except:
self.categorical_columns.append(col)
def get_basic_stats(self) -> Dict[str, Any]:
if self.data is None:
return {}
stats = {
'summary': self.data[self.numeric_columns].describe(),
'missing_values': self.data.isnull().sum(),
'row_count': len(self.data),
'column_count': len(self.data.columns)
}
return stats
def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure:
if chart_type == "Line Plot":
fig = px.line(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Bar Plot":
fig = px.bar(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Scatter Plot":
fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Box Plot":
fig = px.box(self.data, x=x_col, y=y_col, color=color_col)
else:
fig = px.histogram(self.data, x=x_col, color=color_col)
return fig
class BrainstormManager:
def __init__(self):
if 'products' not in st.session_state:
st.session_state.products = {}
def generate_product_form(self) -> Dict:
with st.form("product_form"):
basic_info = {
"name": st.text_input("Product Name"),
"category": st.selectbox("Category", ["Digital", "Physical", "Service"]),
"description": st.text_area("Description"),
"target_audience": st.multiselect("Target Audience",
["Students", "Professionals", "Businesses", "Seniors", "Youth"]),
"price_range": st.slider("Price Range ($)", 0, 1000, (50, 200)),
"launch_date": st.date_input("Expected Launch Date")
}
st.subheader("Market Analysis")
market_analysis = {
"competitors": st.text_area("Main Competitors (one per line)"),
"unique_features": st.text_area("Unique Selling Points"),
"market_size": st.selectbox("Market Size",
["Small", "Medium", "Large", "Enterprise"]),
"growth_potential": st.slider("Growth Potential", 1, 10)
}
submitted = st.form_submit_button("Save Product")
return basic_info, market_analysis, submitted
def analyze_product(self, product_data: Dict) -> Dict:
insights = {
"market_opportunity": self._calculate_opportunity_score(product_data),
"suggested_price": self._suggest_price(product_data),
"risk_factors": self._identify_risks(product_data),
"next_steps": self._generate_next_steps(product_data)
}
return insights
def _calculate_opportunity_score(self, data: Dict) -> int:
score = 0
if data.get("market_size") == "Large":
score += 3
if len(data.get("target_audience", [])) >= 2:
score += 2
if data.get("growth_potential", 0) > 7:
score += 2
return min(score, 10)
def _suggest_price(self, data: Dict) -> float:
base_price = sum(data.get("price_range", (0, 0))) / 2
if data.get("market_size") == "Enterprise":
base_price *= 1.5
return round(base_price, 2)
def _identify_risks(self, data: Dict) -> List[str]:
risks = []
if data.get("competitors"):
risks.append("Competitive market - differentiation crucial")
if len(data.get("target_audience", [])) < 2:
risks.append("Narrow target audience - consider expansion")
return risks
def _generate_next_steps(self, data: Dict) -> List[str]:
steps = [
"Create detailed product specification",
"Develop MVP timeline",
"Plan marketing strategy"
]
if data.get("market_size") == "Enterprise":
steps.append("Prepare enterprise sales strategy")
return steps
# --- Sample Data Generation ---
def generate_sample_data():
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
return pd.DataFrame({
'Date': dates,
'Revenue': np.random.normal(1000, 100, len(dates)),
'Users': np.random.randint(100, 200, len(dates)),
'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
'Category': np.random.choice(['A', 'B', 'C'], len(dates))
})
# --- Page Rendering Functions ---
def render_dashboard():
st.header("π Comprehensive Business Performance Dashboard")
# Generate sample data with more complex structure
data = generate_sample_data()
data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
# Top-level KPI Section
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Revenue",
f"${data['Revenue'].sum():,.2f}",
delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
with col2:
st.metric("Total Users",
f"{data['Users'].sum():,}",
delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
with col3:
st.metric("Avg Engagement",
f"{data['Engagement'].mean():.2%}",
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
with col4:
st.metric("Profit Margin",
f"{data['Profit_Margin'].mean():.2%}",
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
# Visualization Grid
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue & Profit Trends")
fig_revenue = go.Figure()
fig_revenue.add_trace(go.Scatter(
x=data['Date'],
y=data['Revenue'],
mode='lines',
name='Revenue',
line=dict(color='blue')
))
fig_revenue.add_trace(go.Scatter(
x=data['Date'],
y=data['Profit_Margin'],
mode='lines',
name='Profit Margin',
line=dict(color='green')
))
fig_revenue.update_layout(height=350)
st.plotly_chart(fig_revenue, use_container_width=True)
with col2:
st.subheader("User Engagement Analysis")
fig_engagement = px.scatter(
data,
x='Users',
y='Engagement',
color='Category',
size='Revenue',
hover_data=['Date'],
title='User Engagement Dynamics'
)
fig_engagement.update_layout(height=350)
st.plotly_chart(fig_engagement, use_container_width=True)
# Category Performance
st.subheader("Category Performance Breakdown")
category_performance = data.groupby('Category').agg({
'Revenue': 'sum',
'Users': 'sum',
'Engagement': 'mean'
}).reset_index()
fig_category = px.bar(
category_performance,
x='Category',
y='Revenue',
color='Engagement',
title='Revenue by Category with Engagement Overlay'
)
st.plotly_chart(fig_category, use_container_width=True)
# Bottom Summary
st.subheader("Quick Insights")
insights_col1, insights_col2 = st.columns(2)
with insights_col1:
st.metric("Top Performing Category",
category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
with insights_col2:
st.metric("Highest Engagement Category",
category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])
def render_analytics():
st.header("π Data Analytics")
processor = DataProcessor()
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
if uploaded_file is not None:
if processor.load_data(uploaded_file):
st.success("Data loaded successfully!")
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
with tabs[0]:
st.subheader("Data Preview")
st.dataframe(processor.data.head())
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
with tabs[1]:
st.subheader("Basic Statistics")
stats = processor.get_basic_stats()
st.write(stats['summary'])
st.subheader("Missing Values")
st.write(stats['missing_values'])
with tabs[2]:
st.subheader("Create Visualization")
col1, col2, col3 = st.columns(3)
with col1:
chart_type = st.selectbox(
"Select Chart Type",
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
)
with col2:
x_col = st.selectbox("Select X-axis", processor.data.columns)
with col3:
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
color_col = st.selectbox("Select Color Variable (optional)",
['None'] + processor.categorical_columns)
color_col = None if color_col == 'None' else color_col
fig = processor.create_visualization(
chart_type,
x_col,
y_col if y_col else x_col,
color_col
)
st.plotly_chart(fig, use_container_width=True)
with tabs[3]:
st.subheader("Column Metrics")
selected_col = st.selectbox("Select column", processor.numeric_columns)
metrics = {
'Mean': processor.data[selected_col].mean(),
'Median': processor.data[selected_col].median(),
'Std Dev': processor.data[selected_col].std(),
'Min': processor.data[selected_col].min(),
'Max': processor.data[selected_col].max()
}
cols = st.columns(len(metrics))
for col, (metric, value) in zip(cols, metrics.items()):
col.metric(metric, f"{value:.2f}")
def render_brainstorm_page():
st.title("Product Brainstorm Hub")
manager = BrainstormManager()
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
if action == "Create New Product":
basic_info, market_analysis, submitted = manager.generate_product_form()
if submitted:
product_data = {**basic_info, **market_analysis}
insights = manager.analyze_product(product_data)
product_id = f"prod_{len(st.session_state.products)}"
st.session_state.products[product_id] = {
"data": product_data,
"insights": insights,
"created_at": str(datetime.now())
}
st.success("Product added! View insights in the Products tab.")
else:
if st.session_state.products:
for prod_id, product in st.session_state.products.items():
with st.expander(f"π― {product['data']['name']}"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Product Details")
st.write(f"Category: {product['data']['category']}")
st.write(f"Target: {', '.join(product['data']['target_audience'])}")
st.write(f"Description: {product['data']['description']}")
with col2:
st.subheader("Insights")
st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
st.write("**Risk Factors:**")
for risk in product['insights']['risk_factors']:
st.write(f"- {risk}")
st.write("**Next Steps:**")
for step in product['insights']['next_steps']:
st.write(f"- {step}")
else:
st.info("No products yet. Create one to get started!")
def generate_response(self, prompt: str, context: list = None) -> str:
if not self.model or not self.tokenizer:
return "LLM not initialized. Please check model configuration."
# Prepare conversation context
if context is None:
context = []
# Create full prompt with conversation history
full_prompt = "".join([f"{msg['role']}: {msg['content']}\n" for msg in context])
full_prompt += f"user: {prompt}\nassistant: "
# Tokenize input
input_ids = self.tokenizer(full_prompt, return_tensors="pt").input_ids.to(self.model.device)
# Generate response
try:
output = self.model.generate(
input_ids,
max_length=500,
num_return_sequences=1,
no_repeat_ngram_size=2,
temperature=0.7,
top_p=0.9
)
# Decode response
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
# Extract only the new part of the response
response = response[len(full_prompt):].strip()
return response
except Exception as e:
return f"Response generation error: {e}"
def render_chat():
st.header("π¬AI Business Mentor")
st.title("π€ Prospira AI Business Mentor")
iframe_code = """
<iframe
src="https://demoorganisation34-vinay.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
"""
components.html(iframe_code, height=600)
def render_home():
st.title("π Welcome to Prospira")
st.subheader("π Data-Driven Solutions for Businesses and Creators")
st.markdown("""
**Prospira** empowers businesses and creators to enhance their content, products, and marketing strategies using AI-driven insights.
### **β¨ Key Features**
- **π Performance Analytics:** Real-time insights into business metrics.
- **π Competitive Analysis:** Benchmark your business against competitors.
- **π‘ Smart Product Ideas:** AI-generated recommendations for future products and content.
- **π§ AI Business Mentor:** Personalized AI guidance for strategy and growth.
Explore how **Prospira** can help optimize your decision-making and drive success! π‘π
""")
def main():
st.set_page_config(
page_title="Prospira",
page_icon="π",
layout="centered",
initial_sidebar_state="expanded"
)
# Create a selection box to choose between pages
page = st.sidebar.radio("Select a page", ["Home", "Dashboard", "Analytics", "Brainstorm", "Chat"])
if page == "Home":
render_home()
elif page == "Dashboard":
render_dashboard()
elif page == "Analytics":
render_analytics()
elif page == "Brainstorm":
render_brainstorm_page()
elif page == "Chat":
render_chat()
if __name__ == "__main__":
main() |