Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,6 @@ import numpy as np
|
|
6 |
from datetime import datetime, timedelta
|
7 |
from typing import Dict, List, Any
|
8 |
|
9 |
-
# --- Brainstorm Class ---
|
10 |
-
class BrainstormManager:
|
11 |
-
def __init__(self):
|
12 |
-
# Initialize session state for products
|
13 |
-
if 'products' not in st.session_state:
|
14 |
-
st.session_state.products = {}
|
15 |
-
|
16 |
# --- Data Processing Class ---
|
17 |
class DataProcessor:
|
18 |
def __init__(self):
|
@@ -69,6 +62,78 @@ class DataProcessor:
|
|
69 |
|
70 |
return fig
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# --- Sample Data Generation ---
|
73 |
def generate_sample_data():
|
74 |
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
|
@@ -85,7 +150,6 @@ def render_dashboard():
|
|
85 |
st.header("📊 Performance Dashboard")
|
86 |
data = generate_sample_data()
|
87 |
|
88 |
-
# KPI Metrics
|
89 |
col1, col2, col3, col4 = st.columns(4)
|
90 |
with col1:
|
91 |
st.metric("Total Revenue", f"${data['Revenue'].sum():,.2f}")
|
@@ -96,7 +160,6 @@ def render_dashboard():
|
|
96 |
with col4:
|
97 |
st.metric("Active Days", len(data))
|
98 |
|
99 |
-
# Charts
|
100 |
col1, col2 = st.columns(2)
|
101 |
with col1:
|
102 |
st.subheader("Revenue Trend")
|
@@ -113,8 +176,6 @@ def render_analytics():
|
|
113 |
st.header("🔍 Data Analytics")
|
114 |
|
115 |
processor = DataProcessor()
|
116 |
-
|
117 |
-
# File upload
|
118 |
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
|
119 |
|
120 |
if uploaded_file is not None:
|
@@ -123,13 +184,11 @@ def render_analytics():
|
|
123 |
|
124 |
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
|
125 |
|
126 |
-
# Data Preview Tab
|
127 |
with tabs[0]:
|
128 |
st.subheader("Data Preview")
|
129 |
st.dataframe(processor.data.head())
|
130 |
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
|
131 |
|
132 |
-
# Statistics Tab
|
133 |
with tabs[1]:
|
134 |
st.subheader("Basic Statistics")
|
135 |
stats = processor.get_basic_stats()
|
@@ -138,7 +197,6 @@ def render_analytics():
|
|
138 |
st.subheader("Missing Values")
|
139 |
st.write(stats['missing_values'])
|
140 |
|
141 |
-
# Visualization Tab
|
142 |
with tabs[2]:
|
143 |
st.subheader("Create Visualization")
|
144 |
col1, col2, col3 = st.columns(3)
|
@@ -167,7 +225,6 @@ def render_analytics():
|
|
167 |
)
|
168 |
st.plotly_chart(fig, use_container_width=True)
|
169 |
|
170 |
-
# Metrics Tab
|
171 |
with tabs[3]:
|
172 |
st.subheader("Column Metrics")
|
173 |
selected_col = st.selectbox("Select column", processor.numeric_columns)
|
@@ -184,101 +241,24 @@ def render_analytics():
|
|
184 |
for col, (metric, value) in zip(cols, metrics.items()):
|
185 |
col.metric(metric, f"{value:.2f}")
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
def generate_product_form(self) -> Dict:
|
191 |
-
"""Generate dynamic form fields for product input"""
|
192 |
-
with st.form("product_form"):
|
193 |
-
basic_info = {
|
194 |
-
"name": st.text_input("Product Name"),
|
195 |
-
"category": st.selectbox("Category", ["Digital", "Physical", "Service"]),
|
196 |
-
"description": st.text_area("Description"),
|
197 |
-
"target_audience": st.multiselect("Target Audience",
|
198 |
-
["Students", "Professionals", "Businesses", "Seniors", "Youth"]),
|
199 |
-
"price_range": st.slider("Price Range ($)", 0, 1000, (50, 200)),
|
200 |
-
"launch_date": st.date_input("Expected Launch Date")
|
201 |
-
}
|
202 |
-
|
203 |
-
st.subheader("Market Analysis")
|
204 |
-
market_analysis = {
|
205 |
-
"competitors": st.text_area("Main Competitors (one per line)"),
|
206 |
-
"unique_features": st.text_area("Unique Selling Points"),
|
207 |
-
"market_size": st.selectbox("Market Size",
|
208 |
-
["Small", "Medium", "Large", "Enterprise"]),
|
209 |
-
"growth_potential": st.slider("Growth Potential", 1, 10)
|
210 |
-
}
|
211 |
-
|
212 |
-
submitted = st.form_submit_button("Save Product")
|
213 |
-
return basic_info, market_analysis, submitted
|
214 |
-
|
215 |
-
def analyze_product(self, product_data: Dict) -> Dict:
|
216 |
-
"""Generate insights based on product data"""
|
217 |
-
insights = {
|
218 |
-
"market_opportunity": self._calculate_opportunity_score(product_data),
|
219 |
-
"suggested_price": self._suggest_price(product_data),
|
220 |
-
"risk_factors": self._identify_risks(product_data),
|
221 |
-
"next_steps": self._generate_next_steps(product_data)
|
222 |
-
}
|
223 |
-
return insights
|
224 |
-
|
225 |
-
def _calculate_opportunity_score(self, data: Dict) -> int:
|
226 |
-
score = 0
|
227 |
-
if data.get("market_size") == "Large":
|
228 |
-
score += 3
|
229 |
-
if len(data.get("target_audience", [])) >= 2:
|
230 |
-
score += 2
|
231 |
-
if data.get("growth_potential", 0) > 7:
|
232 |
-
score += 2
|
233 |
-
return min(score, 10)
|
234 |
-
|
235 |
-
def _suggest_price(self, data: Dict) -> float:
|
236 |
-
base_price = sum(data.get("price_range", (0, 0))) / 2
|
237 |
-
if data.get("market_size") == "Enterprise":
|
238 |
-
base_price *= 1.5
|
239 |
-
return round(base_price, 2)
|
240 |
-
|
241 |
-
def _identify_risks(self, data: Dict) -> List[str]:
|
242 |
-
risks = []
|
243 |
-
if data.get("competitors"):
|
244 |
-
risks.append("Competitive market - differentiation crucial")
|
245 |
-
if len(data.get("target_audience", [])) < 2:
|
246 |
-
risks.append("Narrow target audience - consider expansion")
|
247 |
-
return risks
|
248 |
-
|
249 |
-
def _generate_next_steps(self, data: Dict) -> List[str]:
|
250 |
-
steps = [
|
251 |
-
"Create detailed product specification",
|
252 |
-
"Develop MVP timeline",
|
253 |
-
"Plan marketing strategy"
|
254 |
-
]
|
255 |
-
if data.get("market_size") == "Enterprise":
|
256 |
-
steps.append("Prepare enterprise sales strategy")
|
257 |
-
return steps
|
258 |
-
|
259 |
def render_brainstorm_page():
|
260 |
st.title("Product Brainstorm Hub")
|
261 |
manager = BrainstormManager()
|
262 |
|
263 |
-
# View/Create toggle
|
264 |
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
|
265 |
|
266 |
if action == "Create New Product":
|
267 |
basic_info, market_analysis, submitted = manager.generate_product_form()
|
268 |
|
269 |
if submitted:
|
270 |
-
# Combine form data
|
271 |
product_data = {**basic_info, **market_analysis}
|
272 |
-
|
273 |
-
# Generate insights
|
274 |
insights = manager.analyze_product(product_data)
|
275 |
|
276 |
-
# Store product
|
277 |
product_id = f"prod_{len(st.session_state.products)}"
|
278 |
st.session_state.products[product_id] = {
|
279 |
"data": product_data,
|
280 |
"insights": insights,
|
281 |
-
"created_at": str(datetime.
|
282 |
}
|
283 |
|
284 |
st.success("Product added! View insights in the Products tab.")
|
@@ -310,37 +290,27 @@ def render_brainstorm_page():
|
|
310 |
else:
|
311 |
st.info("No products yet. Create one to get started!")
|
312 |
|
313 |
-
# Usage in main app
|
314 |
-
if __name__ == "__main__":
|
315 |
-
render_brainstorm_page()
|
316 |
-
|
317 |
def render_chat():
|
318 |
st.header("💬 Business Assistant")
|
319 |
|
320 |
-
# Initialize chat history
|
321 |
if "messages" not in st.session_state:
|
322 |
st.session_state.messages = []
|
323 |
|
324 |
-
# Display chat history
|
325 |
for message in st.session_state.messages:
|
326 |
with st.chat_message(message["role"]):
|
327 |
st.markdown(message["content"])
|
328 |
|
329 |
-
# Chat input
|
330 |
if prompt := st.chat_input("Ask about your business..."):
|
331 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
332 |
with st.chat_message("user"):
|
333 |
st.markdown(prompt)
|
334 |
|
335 |
-
# Simple response (placeholder for LLM integration)
|
336 |
response = f"Thank you for your question about '{prompt}'. The LLM integration will be implemented soon."
|
337 |
|
338 |
with st.chat_message("assistant"):
|
339 |
st.markdown(response)
|
340 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
341 |
|
342 |
-
|
343 |
-
#main file
|
344 |
def main():
|
345 |
st.set_page_config(
|
346 |
page_title="Prospira",
|
|
|
6 |
from datetime import datetime, timedelta
|
7 |
from typing import Dict, List, Any
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# --- Data Processing Class ---
|
10 |
class DataProcessor:
|
11 |
def __init__(self):
|
|
|
62 |
|
63 |
return fig
|
64 |
|
65 |
+
class BrainstormManager:
|
66 |
+
def __init__(self):
|
67 |
+
if 'products' not in st.session_state:
|
68 |
+
st.session_state.products = {}
|
69 |
+
|
70 |
+
def generate_product_form(self) -> Dict:
|
71 |
+
with st.form("product_form"):
|
72 |
+
basic_info = {
|
73 |
+
"name": st.text_input("Product Name"),
|
74 |
+
"category": st.selectbox("Category", ["Digital", "Physical", "Service"]),
|
75 |
+
"description": st.text_area("Description"),
|
76 |
+
"target_audience": st.multiselect("Target Audience",
|
77 |
+
["Students", "Professionals", "Businesses", "Seniors", "Youth"]),
|
78 |
+
"price_range": st.slider("Price Range ($)", 0, 1000, (50, 200)),
|
79 |
+
"launch_date": st.date_input("Expected Launch Date")
|
80 |
+
}
|
81 |
+
|
82 |
+
st.subheader("Market Analysis")
|
83 |
+
market_analysis = {
|
84 |
+
"competitors": st.text_area("Main Competitors (one per line)"),
|
85 |
+
"unique_features": st.text_area("Unique Selling Points"),
|
86 |
+
"market_size": st.selectbox("Market Size",
|
87 |
+
["Small", "Medium", "Large", "Enterprise"]),
|
88 |
+
"growth_potential": st.slider("Growth Potential", 1, 10)
|
89 |
+
}
|
90 |
+
|
91 |
+
submitted = st.form_submit_button("Save Product")
|
92 |
+
return basic_info, market_analysis, submitted
|
93 |
+
|
94 |
+
def analyze_product(self, product_data: Dict) -> Dict:
|
95 |
+
insights = {
|
96 |
+
"market_opportunity": self._calculate_opportunity_score(product_data),
|
97 |
+
"suggested_price": self._suggest_price(product_data),
|
98 |
+
"risk_factors": self._identify_risks(product_data),
|
99 |
+
"next_steps": self._generate_next_steps(product_data)
|
100 |
+
}
|
101 |
+
return insights
|
102 |
+
|
103 |
+
def _calculate_opportunity_score(self, data: Dict) -> int:
|
104 |
+
score = 0
|
105 |
+
if data.get("market_size") == "Large":
|
106 |
+
score += 3
|
107 |
+
if len(data.get("target_audience", [])) >= 2:
|
108 |
+
score += 2
|
109 |
+
if data.get("growth_potential", 0) > 7:
|
110 |
+
score += 2
|
111 |
+
return min(score, 10)
|
112 |
+
|
113 |
+
def _suggest_price(self, data: Dict) -> float:
|
114 |
+
base_price = sum(data.get("price_range", (0, 0))) / 2
|
115 |
+
if data.get("market_size") == "Enterprise":
|
116 |
+
base_price *= 1.5
|
117 |
+
return round(base_price, 2)
|
118 |
+
|
119 |
+
def _identify_risks(self, data: Dict) -> List[str]:
|
120 |
+
risks = []
|
121 |
+
if data.get("competitors"):
|
122 |
+
risks.append("Competitive market - differentiation crucial")
|
123 |
+
if len(data.get("target_audience", [])) < 2:
|
124 |
+
risks.append("Narrow target audience - consider expansion")
|
125 |
+
return risks
|
126 |
+
|
127 |
+
def _generate_next_steps(self, data: Dict) -> List[str]:
|
128 |
+
steps = [
|
129 |
+
"Create detailed product specification",
|
130 |
+
"Develop MVP timeline",
|
131 |
+
"Plan marketing strategy"
|
132 |
+
]
|
133 |
+
if data.get("market_size") == "Enterprise":
|
134 |
+
steps.append("Prepare enterprise sales strategy")
|
135 |
+
return steps
|
136 |
+
|
137 |
# --- Sample Data Generation ---
|
138 |
def generate_sample_data():
|
139 |
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
|
|
|
150 |
st.header("📊 Performance Dashboard")
|
151 |
data = generate_sample_data()
|
152 |
|
|
|
153 |
col1, col2, col3, col4 = st.columns(4)
|
154 |
with col1:
|
155 |
st.metric("Total Revenue", f"${data['Revenue'].sum():,.2f}")
|
|
|
160 |
with col4:
|
161 |
st.metric("Active Days", len(data))
|
162 |
|
|
|
163 |
col1, col2 = st.columns(2)
|
164 |
with col1:
|
165 |
st.subheader("Revenue Trend")
|
|
|
176 |
st.header("🔍 Data Analytics")
|
177 |
|
178 |
processor = DataProcessor()
|
|
|
|
|
179 |
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
|
180 |
|
181 |
if uploaded_file is not None:
|
|
|
184 |
|
185 |
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
|
186 |
|
|
|
187 |
with tabs[0]:
|
188 |
st.subheader("Data Preview")
|
189 |
st.dataframe(processor.data.head())
|
190 |
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
|
191 |
|
|
|
192 |
with tabs[1]:
|
193 |
st.subheader("Basic Statistics")
|
194 |
stats = processor.get_basic_stats()
|
|
|
197 |
st.subheader("Missing Values")
|
198 |
st.write(stats['missing_values'])
|
199 |
|
|
|
200 |
with tabs[2]:
|
201 |
st.subheader("Create Visualization")
|
202 |
col1, col2, col3 = st.columns(3)
|
|
|
225 |
)
|
226 |
st.plotly_chart(fig, use_container_width=True)
|
227 |
|
|
|
228 |
with tabs[3]:
|
229 |
st.subheader("Column Metrics")
|
230 |
selected_col = st.selectbox("Select column", processor.numeric_columns)
|
|
|
241 |
for col, (metric, value) in zip(cols, metrics.items()):
|
242 |
col.metric(metric, f"{value:.2f}")
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
def render_brainstorm_page():
|
245 |
st.title("Product Brainstorm Hub")
|
246 |
manager = BrainstormManager()
|
247 |
|
|
|
248 |
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
|
249 |
|
250 |
if action == "Create New Product":
|
251 |
basic_info, market_analysis, submitted = manager.generate_product_form()
|
252 |
|
253 |
if submitted:
|
|
|
254 |
product_data = {**basic_info, **market_analysis}
|
|
|
|
|
255 |
insights = manager.analyze_product(product_data)
|
256 |
|
|
|
257 |
product_id = f"prod_{len(st.session_state.products)}"
|
258 |
st.session_state.products[product_id] = {
|
259 |
"data": product_data,
|
260 |
"insights": insights,
|
261 |
+
"created_at": str(datetime.now())
|
262 |
}
|
263 |
|
264 |
st.success("Product added! View insights in the Products tab.")
|
|
|
290 |
else:
|
291 |
st.info("No products yet. Create one to get started!")
|
292 |
|
|
|
|
|
|
|
|
|
293 |
def render_chat():
|
294 |
st.header("💬 Business Assistant")
|
295 |
|
|
|
296 |
if "messages" not in st.session_state:
|
297 |
st.session_state.messages = []
|
298 |
|
|
|
299 |
for message in st.session_state.messages:
|
300 |
with st.chat_message(message["role"]):
|
301 |
st.markdown(message["content"])
|
302 |
|
|
|
303 |
if prompt := st.chat_input("Ask about your business..."):
|
304 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
305 |
with st.chat_message("user"):
|
306 |
st.markdown(prompt)
|
307 |
|
|
|
308 |
response = f"Thank you for your question about '{prompt}'. The LLM integration will be implemented soon."
|
309 |
|
310 |
with st.chat_message("assistant"):
|
311 |
st.markdown(response)
|
312 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
313 |
|
|
|
|
|
314 |
def main():
|
315 |
st.set_page_config(
|
316 |
page_title="Prospira",
|