Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -147,118 +147,96 @@ def generate_sample_data():
|
|
147 |
|
148 |
# --- Page Rendering Functions ---
|
149 |
def render_dashboard():
|
150 |
-
st.header("π
|
151 |
|
152 |
-
#
|
153 |
-
|
154 |
-
|
155 |
-
base_data = pd.DataFrame({
|
156 |
-
'Date': dates,
|
157 |
-
'Revenue': np.random.normal(1000, 100, len(dates)),
|
158 |
-
'Users': np.random.randint(100, 200, len(dates)),
|
159 |
-
'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
|
160 |
-
'Category': np.random.choice(['Digital', 'Physical', 'Service'], len(dates))
|
161 |
-
})
|
162 |
-
|
163 |
-
# Simple predictive modeling
|
164 |
-
base_data['Predicted_Revenue'] = base_data['Revenue'] * np.linspace(1, 1.2, len(dates))
|
165 |
-
base_data['Revenue_Trend'] = np.where(base_data['Predicted_Revenue'] > base_data['Revenue'], 'Positive', 'Negative')
|
166 |
-
|
167 |
-
return base_data
|
168 |
-
|
169 |
-
# Data Preparation
|
170 |
-
data = generate_predictive_data()
|
171 |
-
|
172 |
-
# Sidebar Filters
|
173 |
-
st.sidebar.header("Dashboard Filters")
|
174 |
-
selected_categories = st.sidebar.multiselect(
|
175 |
-
"Select Categories",
|
176 |
-
options=data['Category'].unique(),
|
177 |
-
default=data['Category'].unique()
|
178 |
-
)
|
179 |
-
|
180 |
-
date_range = st.sidebar.date_input(
|
181 |
-
"Select Date Range",
|
182 |
-
[data['Date'].min(), data['Date'].max()]
|
183 |
-
)
|
184 |
-
|
185 |
-
# Filter Data
|
186 |
-
filtered_data = data[
|
187 |
-
(data['Category'].isin(selected_categories)) &
|
188 |
-
(data['Date'].between(date_range[0], date_range[1]))
|
189 |
-
]
|
190 |
|
191 |
-
# KPI
|
192 |
col1, col2, col3, col4 = st.columns(4)
|
193 |
with col1:
|
194 |
st.metric("Total Revenue",
|
195 |
-
f"${
|
196 |
-
delta=f"{
|
197 |
with col2:
|
198 |
st.metric("Total Users",
|
199 |
-
f"{
|
200 |
-
delta=f"{
|
201 |
with col3:
|
202 |
st.metric("Avg Engagement",
|
203 |
-
f"{
|
|
|
204 |
with col4:
|
205 |
-
st.metric("
|
206 |
-
|
|
|
207 |
|
208 |
-
#
|
209 |
col1, col2 = st.columns(2)
|
210 |
|
211 |
with col1:
|
212 |
-
st.subheader("Revenue
|
213 |
-
|
214 |
-
|
215 |
-
x=
|
216 |
-
y=
|
217 |
mode='lines',
|
218 |
-
name='
|
219 |
line=dict(color='blue')
|
220 |
))
|
221 |
-
|
222 |
-
x=
|
223 |
-
y=
|
224 |
mode='lines',
|
225 |
-
name='
|
226 |
-
line=dict(color='
|
227 |
))
|
228 |
-
|
|
|
229 |
|
230 |
with col2:
|
231 |
-
st.subheader("
|
232 |
-
|
233 |
-
|
234 |
-
'Users'
|
235 |
-
'Engagement'
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
category_performance,
|
241 |
-
x='Category',
|
242 |
-
y='Total_Revenue',
|
243 |
-
color='Avg_Engagement',
|
244 |
-
hover_data=['Total_Users', 'Avg_Revenue']
|
245 |
)
|
246 |
-
|
|
|
247 |
|
248 |
-
#
|
249 |
-
st.subheader("
|
250 |
-
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
def render_analytics():
|
264 |
st.header("π Data Analytics")
|
|
|
147 |
|
148 |
# --- Page Rendering Functions ---
|
149 |
def render_dashboard():
|
150 |
+
st.header("π Comprehensive Business Performance Dashboard")
|
151 |
|
152 |
+
# Generate sample data with more complex structure
|
153 |
+
data = generate_sample_data()
|
154 |
+
data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
# Top-level KPI Section
|
157 |
col1, col2, col3, col4 = st.columns(4)
|
158 |
with col1:
|
159 |
st.metric("Total Revenue",
|
160 |
+
f"${data['Revenue'].sum():,.2f}",
|
161 |
+
delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
|
162 |
with col2:
|
163 |
st.metric("Total Users",
|
164 |
+
f"{data['Users'].sum():,}",
|
165 |
+
delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
|
166 |
with col3:
|
167 |
st.metric("Avg Engagement",
|
168 |
+
f"{data['Engagement'].mean():.2%}",
|
169 |
+
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
|
170 |
with col4:
|
171 |
+
st.metric("Profit Margin",
|
172 |
+
f"{data['Profit_Margin'].mean():.2%}",
|
173 |
+
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
|
174 |
|
175 |
+
# Visualization Grid
|
176 |
col1, col2 = st.columns(2)
|
177 |
|
178 |
with col1:
|
179 |
+
st.subheader("Revenue & Profit Trends")
|
180 |
+
fig_revenue = go.Figure()
|
181 |
+
fig_revenue.add_trace(go.Scatter(
|
182 |
+
x=data['Date'],
|
183 |
+
y=data['Revenue'],
|
184 |
mode='lines',
|
185 |
+
name='Revenue',
|
186 |
line=dict(color='blue')
|
187 |
))
|
188 |
+
fig_revenue.add_trace(go.Scatter(
|
189 |
+
x=data['Date'],
|
190 |
+
y=data['Profit_Margin'],
|
191 |
mode='lines',
|
192 |
+
name='Profit Margin',
|
193 |
+
line=dict(color='green')
|
194 |
))
|
195 |
+
fig_revenue.update_layout(height=350)
|
196 |
+
st.plotly_chart(fig_revenue, use_container_width=True)
|
197 |
|
198 |
with col2:
|
199 |
+
st.subheader("User Engagement Analysis")
|
200 |
+
fig_engagement = px.scatter(
|
201 |
+
data,
|
202 |
+
x='Users',
|
203 |
+
y='Engagement',
|
204 |
+
color='Category',
|
205 |
+
size='Revenue',
|
206 |
+
hover_data=['Date'],
|
207 |
+
title='User Engagement Dynamics'
|
|
|
|
|
|
|
|
|
|
|
208 |
)
|
209 |
+
fig_engagement.update_layout(height=350)
|
210 |
+
st.plotly_chart(fig_engagement, use_container_width=True)
|
211 |
|
212 |
+
# Category Performance
|
213 |
+
st.subheader("Category Performance Breakdown")
|
214 |
+
category_performance = data.groupby('Category').agg({
|
215 |
+
'Revenue': 'sum',
|
216 |
+
'Users': 'sum',
|
217 |
+
'Engagement': 'mean'
|
218 |
+
}).reset_index()
|
219 |
|
220 |
+
fig_category = px.bar(
|
221 |
+
category_performance,
|
222 |
+
x='Category',
|
223 |
+
y='Revenue',
|
224 |
+
color='Engagement',
|
225 |
+
title='Revenue by Category with Engagement Overlay'
|
226 |
+
)
|
227 |
+
st.plotly_chart(fig_category, use_container_width=True)
|
228 |
|
229 |
+
# Bottom Summary
|
230 |
+
st.subheader("Quick Insights")
|
231 |
+
insights_col1, insights_col2 = st.columns(2)
|
232 |
+
|
233 |
+
with insights_col1:
|
234 |
+
st.metric("Top Performing Category",
|
235 |
+
category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
|
236 |
+
|
237 |
+
with insights_col2:
|
238 |
+
st.metric("Highest Engagement Category",
|
239 |
+
category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])
|
240 |
|
241 |
def render_analytics():
|
242 |
st.header("π Data Analytics")
|