File size: 4,240 Bytes
95eb12a 3a638f5 95eb12a 7a4e6c2 95eb12a 7a4e6c2 95eb12a 0a1a3d2 eb30003 95eb12a 7a4e6c2 95eb12a 7a4e6c2 95eb12a 7a4e6c2 95eb12a a257577 95eb12a 7a4e6c2 95eb12a 7a4e6c2 95eb12a 7a4e6c2 95eb12a 7a4e6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import streamlit as st
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain_core.prompts import PromptTemplate
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer
st.title("HocamBot")
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
assert GROQ_API_KEY, "GROQ_API_KEY environment variable not set."
# One-time setup in session state
if 'initialized' not in st.session_state:
st.session_state.initialized = False
try:
with st.spinner("Initializing..."):
# Initialize embeddings model
model_path = "sentence-transformers/all-MiniLM-L12-v2" # Use a smaller, faster model
st.session_state.embedding_function = HuggingFaceEmbeddings(
model_name=model_path,
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': False}
)
# Set up document search
persist_directory = "doc_db"
st.session_state.docsearch = Chroma(
persist_directory=persist_directory,
embedding_function=st.session_state.embedding_function
)
# Initialize ChatGroq model
st.session_state.chat_model = ChatGroq(
model="llama-3.1-8b-instant",
temperature=0,
api_key=GROQ_API_KEY
)
# Define prompt template and memory
template = """You are a chatbot having a conversation with a human. Your name is Devrim.
Given the following extracted parts of a long document and a question, create a final answer. If the answer is not in the document or irrelevant, just say that you don't know, don't try to make up an answer.
{context}
{chat_history}
Human: {human_input}
Chatbot:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input", "context"], template=template
)
st.session_state.memory = ConversationBufferMemory(memory_key="chat_history", input_key="human_input")
# Load QA chain
st.session_state.qa_chain = load_qa_chain(
llm=st.session_state.chat_model,
chain_type="stuff",
memory=st.session_state.memory,
prompt=prompt
)
st.session_state.initialized = True
st.success("Initialization successful.")
except Exception as e:
st.session_state.initialized = False
st.error(f"Initialization failed: {e}")
# Clear chat history buttons
if st.button("Clear Chat History"):
if 'memory' in st.session_state:
st.session_state.memory.clear()
st.rerun() # Refresh the app to reflect the cleared history
# Display chat history if initialized
if st.session_state.initialized and 'memory' in st.session_state:
if st.session_state.memory.buffer_as_messages:
for message in st.session_state.memory.buffer_as_messages:
if message.type == "ai":
st.chat_message(name="ai", avatar="🤖").write(message.content)
else:
st.chat_message(name="human", avatar="👤").write(message.content)
# Input for new query
query = st.chat_input("Ask something")
if query:
try:
with st.spinner("Answering..."):
# Perform similarity search and get response
docs = st.session_state.docsearch.similarity_search(query, k=1) # Reduced k for speed
response = st.session_state.qa_chain(
{"input_documents": docs, "human_input": query},
return_only_outputs=True
)["output_text"]
# Display new message
st.chat_message(name="human", avatar="👤").write(query)
st.chat_message(name="ai", avatar="🤖").write(response)
except Exception as e:
st.error(f"An error occurred: {e}")
|