Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,108 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.chains.question_answering import load_qa_chain
|
6 |
+
from langchain.memory import ConversationBufferMemory
|
7 |
+
from langchain_core.prompts import PromptTemplate
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
|
12 |
+
st.title("Chatbot")
|
|
|
13 |
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
17 |
+
assert GROQ_API_KEY, "GROQ_API_KEY environment variable not set."
|
18 |
+
|
19 |
+
# One-time setup in session state
|
20 |
+
if 'initialized' not in st.session_state:
|
21 |
+
st.session_state.initialized = False
|
22 |
+
|
23 |
+
try:
|
24 |
+
with st.spinner("Initializing..."):
|
25 |
+
# Initialize embeddings model
|
26 |
+
model_path = "sentence-transformers/all-MiniLM-L12-v2" # Use a smaller, faster model
|
27 |
+
|
28 |
+
st.session_state.embedding_function = HuggingFaceEmbeddings(
|
29 |
+
model_name=model_path,
|
30 |
+
model_kwargs={'device': 'cpu'},
|
31 |
+
encode_kwargs={'normalize_embeddings': False}
|
32 |
+
)
|
33 |
+
|
34 |
+
# Set up document search
|
35 |
+
persist_directory = "doc_db"
|
36 |
+
st.session_state.docsearch = Chroma(
|
37 |
+
persist_directory=persist_directory,
|
38 |
+
embedding_function=st.session_state.embedding_function
|
39 |
+
)
|
40 |
+
|
41 |
+
# Initialize ChatGroq model
|
42 |
+
st.session_state.chat_model = ChatGroq(
|
43 |
+
model="llama-3.1-8b-instant",
|
44 |
+
temperature=0,
|
45 |
+
api_key=GROQ_API_KEY
|
46 |
+
)
|
47 |
+
|
48 |
+
# Define prompt template and memory
|
49 |
+
template = """You are a chatbot having a conversation with a human. Your name is Devrim.
|
50 |
+
Given the following extracted parts of a long document and a question, create a final answer. If the answer is not in the document or irrelevant, just say that you don't know, don't try to make up an answer.
|
51 |
+
{context}
|
52 |
+
{chat_history}
|
53 |
+
Human: {human_input}
|
54 |
+
Chatbot:"""
|
55 |
+
|
56 |
+
prompt = PromptTemplate(
|
57 |
+
input_variables=["chat_history", "human_input", "context"], template=template
|
58 |
+
)
|
59 |
+
st.session_state.memory = ConversationBufferMemory(memory_key="chat_history", input_key="human_input")
|
60 |
+
|
61 |
+
# Load QA chain
|
62 |
+
st.session_state.qa_chain = load_qa_chain(
|
63 |
+
llm=st.session_state.chat_model,
|
64 |
+
chain_type="stuff",
|
65 |
+
memory=st.session_state.memory,
|
66 |
+
prompt=prompt
|
67 |
+
)
|
68 |
+
|
69 |
+
st.session_state.initialized = True
|
70 |
+
st.success("Initialization successful.")
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
st.session_state.initialized = False
|
74 |
+
st.error(f"Initialization failed: {e}")
|
75 |
+
|
76 |
+
# Clear chat history buttons
|
77 |
+
if st.button("Clear Chat History"):
|
78 |
+
if 'memory' in st.session_state:
|
79 |
+
st.session_state.memory.clear()
|
80 |
+
st.experimental_rerun() # Refresh the app to reflect the cleared history
|
81 |
+
|
82 |
+
# Display chat history if initialized
|
83 |
+
if st.session_state.initialized and 'memory' in st.session_state:
|
84 |
+
if st.session_state.memory.buffer_as_messages:
|
85 |
+
for message in st.session_state.memory.buffer_as_messages:
|
86 |
+
if message.type == "ai":
|
87 |
+
st.chat_message(name="ai", avatar="🤖").write(message.content)
|
88 |
+
else:
|
89 |
+
st.chat_message(name="human", avatar="👤").write(message.content)
|
90 |
+
|
91 |
+
# Input for new query
|
92 |
+
query = st.chat_input("Ask something")
|
93 |
+
if query:
|
94 |
+
try:
|
95 |
+
with st.spinner("Answering..."):
|
96 |
+
# Perform similarity search and get response
|
97 |
+
docs = st.session_state.docsearch.similarity_search(query, k=1) # Reduced k for speed
|
98 |
+
response = st.session_state.qa_chain(
|
99 |
+
{"input_documents": docs, "human_input": query},
|
100 |
+
return_only_outputs=True
|
101 |
+
)["output_text"]
|
102 |
+
|
103 |
+
# Display new message
|
104 |
+
st.chat_message(name="human", avatar="👤").write(query)
|
105 |
+
st.chat_message(name="ai", avatar="🤖").write(response)
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"An error occurred: {e}")
|