Spaces:
Running
on
Zero
Running
on
Zero
from transformers import T5EncoderModel,T5TokenizerFast | |
import torch | |
from diffusers import FluxTransformer2DModel | |
from torch import nn | |
from typing import List | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
from diffusers.training_utils import compute_density_for_timestep_sampling | |
import copy | |
import torch.nn.functional as F | |
import numpy as np | |
from tqdm import tqdm | |
from typing import Optional,Union,List | |
from datasets import load_dataset, Audio | |
from math import pi | |
import inspect | |
import yaml | |
class StableAudioPositionalEmbedding(nn.Module): | |
"""Used for continuous time | |
Adapted from stable audio open. | |
""" | |
def __init__(self, dim: int): | |
super().__init__() | |
assert (dim % 2) == 0 | |
half_dim = dim // 2 | |
self.weights = nn.Parameter(torch.randn(half_dim)) | |
def forward(self, times: torch.Tensor) -> torch.Tensor: | |
times = times[..., None] | |
freqs = times * self.weights[None] * 2 * pi | |
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) | |
fouriered = torch.cat((times, fouriered), dim=-1) | |
return fouriered | |
class DurationEmbedder(nn.Module): | |
""" | |
A simple linear projection model to map numbers to a latent space. | |
Code is adapted from | |
https://github.com/Stability-AI/stable-audio-tools | |
Args: | |
number_embedding_dim (`int`): | |
Dimensionality of the number embeddings. | |
min_value (`int`): | |
The minimum value of the seconds number conditioning modules. | |
max_value (`int`): | |
The maximum value of the seconds number conditioning modules | |
internal_dim (`int`): | |
Dimensionality of the intermediate number hidden states. | |
""" | |
def __init__( | |
self, | |
number_embedding_dim, | |
min_value, | |
max_value, | |
internal_dim: Optional[int] = 256, | |
): | |
super().__init__() | |
self.time_positional_embedding = nn.Sequential( | |
StableAudioPositionalEmbedding(internal_dim), | |
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim), | |
) | |
self.number_embedding_dim = number_embedding_dim | |
self.min_value = min_value | |
self.max_value = max_value | |
self.dtype = torch.float32 | |
def forward( | |
self, | |
floats: torch.Tensor, | |
): | |
floats = floats.clamp(self.min_value, self.max_value) | |
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value) | |
# Cast floats to same type as embedder | |
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype | |
normalized_floats = normalized_floats.to(embedder_dtype) | |
embedding = self.time_positional_embedding(normalized_floats) | |
float_embeds = embedding.view(-1, 1, self.number_embedding_dim) | |
return float_embeds | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class TangoFlux(nn.Module): | |
def __init__(self,config,initialize_reference_model=False): | |
super().__init__() | |
self.num_layers = config.get('num_layers', 6) | |
self.num_single_layers = config.get('num_single_layers', 18) | |
self.in_channels = config.get('in_channels', 64) | |
self.attention_head_dim = config.get('attention_head_dim', 128) | |
self.joint_attention_dim = config.get('joint_attention_dim', 1024) | |
self.num_attention_heads = config.get('num_attention_heads', 8) | |
self.audio_seq_len = config.get('audio_seq_len', 645) | |
self.max_duration = config.get('max_duration', 30) | |
self.uncondition = config.get('uncondition', False) | |
self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large") | |
self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000) | |
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler) | |
self.max_text_seq_len = 64 | |
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) | |
self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name) | |
self.text_embedding_dim = self.text_encoder.config.d_model | |
self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU()) | |
self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration) | |
self.transformer = FluxTransformer2DModel( | |
in_channels=self.in_channels, | |
num_layers=self.num_layers, | |
num_single_layers=self.num_single_layers, | |
attention_head_dim=self.attention_head_dim, | |
num_attention_heads=self.num_attention_heads, | |
joint_attention_dim=self.joint_attention_dim, | |
pooled_projection_dim=self.text_embedding_dim, | |
guidance_embeds=False) | |
self.beta_dpo = 2000 ## this is used for dpo training | |
def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32): | |
device = self.text_encoder.device | |
sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype) | |
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device) | |
timesteps = timesteps.to(device) | |
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < n_dim: | |
sigma = sigma.unsqueeze(-1) | |
return sigma | |
def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
with torch.no_grad(): | |
prompt_embeds = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# get unconditional embeddings for classifier free guidance | |
uncond_tokens = [""] | |
max_length = prompt_embeds.shape[1] | |
uncond_batch = self.tokenizer( | |
uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt", | |
) | |
uncond_input_ids = uncond_batch.input_ids.to(device) | |
uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
with torch.no_grad(): | |
negative_prompt_embeds = self.text_encoder( | |
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
)[0] | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
boolean_prompt_mask = (prompt_mask == 1).to(device) | |
return prompt_embeds, boolean_prompt_mask | |
def encode_text(self, prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt") | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask)[0] | |
boolean_encoder_mask = (attention_mask == 1).to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def encode_duration(self,duration): | |
return self.duration_emebdder(duration) | |
def inference_flow(self, prompt, | |
num_inference_steps=50, | |
timesteps=None, | |
guidance_scale=3, | |
duration=10, | |
disable_progress=False, | |
num_samples_per_prompt=1): | |
'''Only tested for single inference. Haven't test for batch inference''' | |
bsz = num_samples_per_prompt | |
device = self.transformer.device | |
scheduler = self.noise_scheduler | |
if not isinstance(prompt,list): | |
prompt = [prompt] | |
if not isinstance(duration,torch.Tensor): | |
duration = torch.tensor([duration],device=device) | |
classifier_free_guidance = guidance_scale > 1.0 | |
duration_hidden_states = self.encode_duration(duration) | |
if classifier_free_guidance: | |
bsz = 2 * num_samples_per_prompt | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt) | |
duration_hidden_states = duration_hidden_states.repeat(bsz,1,1) | |
else: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt) | |
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states) | |
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan'))) | |
pooled = torch.nanmean(masked_data, dim=1) | |
pooled_projection = self.fc(pooled) | |
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim) | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas | |
) | |
latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64) | |
weight_dtype = latents.dtype | |
progress_bar = tqdm(range(num_inference_steps), disable=disable_progress) | |
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device) | |
audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device) | |
timesteps = timesteps.to(device) | |
latents = latents.to(device) | |
encoder_hidden_states = encoder_hidden_states.to(device) | |
for i, t in enumerate(timesteps): | |
latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
noise_pred = self.transformer( | |
hidden_states=latents_input, | |
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
timestep=torch.tensor([t/1000],device=device), | |
guidance = None, | |
pooled_projections=pooled_projection, | |
encoder_hidden_states=encoder_hidden_states, | |
txt_ids=txt_ids, | |
img_ids=audio_ids, | |
return_dict=False, | |
)[0] | |
if classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return latents | |
def forward(self, | |
latents, | |
prompt, | |
duration=torch.tensor([10]), | |
sft=True | |
): | |
device = latents.device | |
audio_seq_length = self.audio_seq_len | |
bsz = latents.shape[0] | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt) | |
duration_hidden_states = self.encode_duration(duration) | |
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states) | |
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan'))) | |
pooled = torch.nanmean(masked_data, dim=1) | |
pooled_projection = self.fc(pooled) | |
## Add duration hidden states to encoder hidden states | |
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim) | |
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device) | |
audio_ids = torch.arange(audio_seq_length).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device) | |
if sft: | |
if self.uncondition: | |
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1] | |
if len(mask_indices) > 0: | |
encoder_hidden_states[mask_indices] = 0 | |
noise = torch.randn_like(latents) | |
u = compute_density_for_timestep_sampling( | |
weighting_scheme='logit_normal', | |
batch_size=bsz, | |
logit_mean=0, | |
logit_std=1, | |
mode_scale=None, | |
) | |
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long() | |
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device) | |
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype) | |
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise | |
model_pred = self.transformer( | |
hidden_states=noisy_model_input, | |
encoder_hidden_states=encoder_hidden_states, | |
pooled_projections=pooled_projection, | |
img_ids=audio_ids, | |
txt_ids=txt_ids, | |
guidance=None, | |
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
timestep=timesteps/1000, | |
return_dict=False)[0] | |
target = noise - latents | |
loss = torch.mean( | |
( (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), | |
1, | |
) | |
loss = loss.mean() | |
raw_model_loss, raw_ref_loss,implicit_acc,epsilon_diff = 0,0,0,0 ## default this to 0 if doing sft | |
else: | |
encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1) | |
pooled_projection = pooled_projection.repeat(2,1) | |
noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1) ## Have to sample same noise for preferred and rejected | |
u = compute_density_for_timestep_sampling( | |
weighting_scheme='logit_normal', | |
batch_size=bsz//2, | |
logit_mean=0, | |
logit_std=1, | |
mode_scale=None, | |
) | |
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long() | |
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device) | |
timesteps = timesteps.repeat(2) | |
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype) | |
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise | |
model_pred = self.transformer( | |
hidden_states=noisy_model_input, | |
encoder_hidden_states=encoder_hidden_states, | |
pooled_projections=pooled_projection, | |
img_ids=audio_ids, | |
txt_ids=txt_ids, | |
guidance=None, | |
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
timestep=timesteps/1000, | |
return_dict=False)[0] | |
target = noise - latents | |
model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape)))) | |
model_losses_w, model_losses_l = model_losses.chunk(2) | |
model_diff = model_losses_w - model_losses_l | |
raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean()) | |
with torch.no_grad(): | |
ref_preds = self.ref_transformer( | |
hidden_states=noisy_model_input, | |
encoder_hidden_states=encoder_hidden_states, | |
pooled_projections=pooled_projection, | |
img_ids=audio_ids, | |
txt_ids=txt_ids, | |
guidance=None, | |
timestep=timesteps/1000, | |
return_dict=False)[0] | |
ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none") | |
ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape)))) | |
ref_losses_w, ref_losses_l = ref_loss.chunk(2) | |
ref_diff = ref_losses_w - ref_losses_l | |
raw_ref_loss = ref_loss.mean() | |
epsilon_diff = torch.max(torch.zeros_like(model_losses_w), | |
ref_losses_w-model_losses_w).mean() | |
scale_term = -0.5 * self.beta_dpo | |
inside_term = scale_term * (model_diff - ref_diff) | |
implicit_acc = (scale_term * (model_diff - ref_diff) > 0).sum().float() / inside_term.size(0) | |
loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean() | |
return loss, raw_model_loss, raw_ref_loss, implicit_acc,epsilon_diff | |