Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,944 Bytes
838c300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
from transformers import T5EncoderModel,T5TokenizerFast
import torch
from diffusers import FluxTransformer2DModel
from torch import nn
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import compute_density_for_timestep_sampling
import copy
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from typing import Optional,Union,List
from datasets import load_dataset, Audio
from math import pi
import inspect
import yaml
class StableAudioPositionalEmbedding(nn.Module):
"""Used for continuous time
Adapted from stable audio open.
"""
def __init__(self, dim: int):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, times: torch.Tensor) -> torch.Tensor:
times = times[..., None]
freqs = times * self.weights[None] * 2 * pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
fouriered = torch.cat((times, fouriered), dim=-1)
return fouriered
class DurationEmbedder(nn.Module):
"""
A simple linear projection model to map numbers to a latent space.
Code is adapted from
https://github.com/Stability-AI/stable-audio-tools
Args:
number_embedding_dim (`int`):
Dimensionality of the number embeddings.
min_value (`int`):
The minimum value of the seconds number conditioning modules.
max_value (`int`):
The maximum value of the seconds number conditioning modules
internal_dim (`int`):
Dimensionality of the intermediate number hidden states.
"""
def __init__(
self,
number_embedding_dim,
min_value,
max_value,
internal_dim: Optional[int] = 256,
):
super().__init__()
self.time_positional_embedding = nn.Sequential(
StableAudioPositionalEmbedding(internal_dim),
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
)
self.number_embedding_dim = number_embedding_dim
self.min_value = min_value
self.max_value = max_value
self.dtype = torch.float32
def forward(
self,
floats: torch.Tensor,
):
floats = floats.clamp(self.min_value, self.max_value)
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
# Cast floats to same type as embedder
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
embedding = self.time_positional_embedding(normalized_floats)
float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
return float_embeds
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class TangoFlux(nn.Module):
def __init__(self,config,initialize_reference_model=False):
super().__init__()
self.num_layers = config.get('num_layers', 6)
self.num_single_layers = config.get('num_single_layers', 18)
self.in_channels = config.get('in_channels', 64)
self.attention_head_dim = config.get('attention_head_dim', 128)
self.joint_attention_dim = config.get('joint_attention_dim', 1024)
self.num_attention_heads = config.get('num_attention_heads', 8)
self.audio_seq_len = config.get('audio_seq_len', 645)
self.max_duration = config.get('max_duration', 30)
self.uncondition = config.get('uncondition', False)
self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large")
self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
self.max_text_seq_len = 64
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name)
self.text_embedding_dim = self.text_encoder.config.d_model
self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU())
self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration)
self.transformer = FluxTransformer2DModel(
in_channels=self.in_channels,
num_layers=self.num_layers,
num_single_layers=self.num_single_layers,
attention_head_dim=self.attention_head_dim,
num_attention_heads=self.num_attention_heads,
joint_attention_dim=self.joint_attention_dim,
pooled_projection_dim=self.text_embedding_dim,
guidance_embeds=False)
self.beta_dpo = 2000 ## this is used for dpo training
def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32):
device = self.text_encoder.device
sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""]
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
@torch.no_grad()
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt")
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_duration(self,duration):
return self.duration_emebdder(duration)
@torch.no_grad()
def inference_flow(self, prompt,
num_inference_steps=50,
timesteps=None,
guidance_scale=3,
duration=10,
disable_progress=False,
num_samples_per_prompt=1):
'''Only tested for single inference. Haven't test for batch inference'''
bsz = num_samples_per_prompt
device = self.transformer.device
scheduler = self.noise_scheduler
if not isinstance(prompt,list):
prompt = [prompt]
if not isinstance(duration,torch.Tensor):
duration = torch.tensor([duration],device=device)
classifier_free_guidance = guidance_scale > 1.0
duration_hidden_states = self.encode_duration(duration)
if classifier_free_guidance:
bsz = 2 * num_samples_per_prompt
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt)
duration_hidden_states = duration_hidden_states.repeat(bsz,1,1)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt)
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
pooled = torch.nanmean(masked_data, dim=1)
pooled_projection = self.fc(pooled)
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(
scheduler,
num_inference_steps,
device,
timesteps,
sigmas
)
latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64)
weight_dtype = latents.dtype
progress_bar = tqdm(range(num_inference_steps), disable=disable_progress)
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
timesteps = timesteps.to(device)
latents = latents.to(device)
encoder_hidden_states = encoder_hidden_states.to(device)
for i, t in enumerate(timesteps):
latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
noise_pred = self.transformer(
hidden_states=latents_input,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=torch.tensor([t/1000],device=device),
guidance = None,
pooled_projections=pooled_projection,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=audio_ids,
return_dict=False,
)[0]
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents
def forward(self,
latents,
prompt,
duration=torch.tensor([10]),
sft=True
):
device = latents.device
audio_seq_length = self.audio_seq_len
bsz = latents.shape[0]
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
duration_hidden_states = self.encode_duration(duration)
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
pooled = torch.nanmean(masked_data, dim=1)
pooled_projection = self.fc(pooled)
## Add duration hidden states to encoder hidden states
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
audio_ids = torch.arange(audio_seq_length).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
if sft:
if self.uncondition:
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
noise = torch.randn_like(latents)
u = compute_density_for_timestep_sampling(
weighting_scheme='logit_normal',
batch_size=bsz,
logit_mean=0,
logit_std=1,
mode_scale=None,
)
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
model_pred = self.transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projection,
img_ids=audio_ids,
txt_ids=txt_ids,
guidance=None,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timesteps/1000,
return_dict=False)[0]
target = noise - latents
loss = torch.mean(
( (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss = loss.mean()
raw_model_loss, raw_ref_loss,implicit_acc,epsilon_diff = 0,0,0,0 ## default this to 0 if doing sft
else:
encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1)
pooled_projection = pooled_projection.repeat(2,1)
noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1) ## Have to sample same noise for preferred and rejected
u = compute_density_for_timestep_sampling(
weighting_scheme='logit_normal',
batch_size=bsz//2,
logit_mean=0,
logit_std=1,
mode_scale=None,
)
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
timesteps = timesteps.repeat(2)
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
model_pred = self.transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projection,
img_ids=audio_ids,
txt_ids=txt_ids,
guidance=None,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timesteps/1000,
return_dict=False)[0]
target = noise - latents
model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none")
model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape))))
model_losses_w, model_losses_l = model_losses.chunk(2)
model_diff = model_losses_w - model_losses_l
raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean())
with torch.no_grad():
ref_preds = self.ref_transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projection,
img_ids=audio_ids,
txt_ids=txt_ids,
guidance=None,
timestep=timesteps/1000,
return_dict=False)[0]
ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none")
ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape))))
ref_losses_w, ref_losses_l = ref_loss.chunk(2)
ref_diff = ref_losses_w - ref_losses_l
raw_ref_loss = ref_loss.mean()
epsilon_diff = torch.max(torch.zeros_like(model_losses_w),
ref_losses_w-model_losses_w).mean()
scale_term = -0.5 * self.beta_dpo
inside_term = scale_term * (model_diff - ref_diff)
implicit_acc = (scale_term * (model_diff - ref_diff) > 0).sum().float() / inside_term.size(0)
loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean()
return loss, raw_model_loss, raw_ref_loss, implicit_acc,epsilon_diff
|