yolov3 / app.py
dawn17's picture
Upload 21 files
bb8e219
raw
history blame
1.29 kB
import os
import gradio as gr
from src.run.yolov3.inference import YoloInfer
infer = YoloInfer(model_path="./checkpoint/model.pt")
demo = gr.Interface(
fn=infer.infer,
inputs=[
gr.Image(
shape=(416, 416),
label="Input Image",
value="./sample/bird_plane.jpeg",
),
gr.Slider(
minimum=0,
maximum=1,
value=0.2,
label="IOU Threshold",
info="Permissible overlap for the same class bounding boxes",
),
gr.Slider(
minimum=0,
maximum=1,
value=0.95,
label="Objectness Threshold",
info="Confidence for each pixel to predict an object",
),
gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Class Threshold",
info="Confidence for each pixel to predict a class",
),
gr.Slider(
minimum=0,
maximum=10,
value=1,
label="Font Size",
info="Bounding box text size",
),
],
outputs=[
gr.Image(),
],
examples=[
[os.path.join("./sample/", f)]
for f in os.listdir("./sample/")
],
)
demo.launch()