Upload 21 files
Browse files- .gitattributes +1 -0
- app.py +57 -0
- requirements.txt +10 -0
- sample/bird_plane.jpeg +0 -0
- sample/bird_plane_2.jpeg +0 -0
- sample/cartoon.png +0 -0
- sample/horse_person_cycle.jpeg +0 -0
- sample/street.jpeg +3 -0
- sample/street2.webp +0 -0
- src/datasets/pascal_voc/__init__.py +1 -0
- src/datasets/pascal_voc/dataset.py +117 -0
- src/datasets/pascal_voc/mosaic.py +0 -0
- src/loss/yolov3/__init__.py +1 -0
- src/loss/yolov3/loss.py +191 -0
- src/model/yolov3/__init__.py +1 -0
- src/model/yolov3/model.py +173 -0
- src/run/__init__.py +0 -0
- src/run/yolov3/config.py +196 -0
- src/run/yolov3/dataloader.py +58 -0
- src/run/yolov3/example/yolov3.ipynb +0 -0
- src/run/yolov3/inference.py +333 -0
- src/run/yolov3/train.py +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
sample/street.jpeg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from src.run.yolov3.inference import YoloInfer
|
6 |
+
|
7 |
+
|
8 |
+
infer = YoloInfer(model_path="./checkpoint/model.pt")
|
9 |
+
|
10 |
+
demo = gr.Interface(
|
11 |
+
fn=infer.infer,
|
12 |
+
inputs=[
|
13 |
+
gr.Image(
|
14 |
+
shape=(416, 416),
|
15 |
+
label="Input Image",
|
16 |
+
value="./sample/bird_plane.jpeg",
|
17 |
+
),
|
18 |
+
gr.Slider(
|
19 |
+
minimum=0,
|
20 |
+
maximum=1,
|
21 |
+
value=0.2,
|
22 |
+
label="IOU Threshold",
|
23 |
+
info="Permissible overlap for the same class bounding boxes",
|
24 |
+
),
|
25 |
+
gr.Slider(
|
26 |
+
minimum=0,
|
27 |
+
maximum=1,
|
28 |
+
value=0.95,
|
29 |
+
label="Objectness Threshold",
|
30 |
+
info="Confidence for each pixel to predict an object",
|
31 |
+
),
|
32 |
+
gr.Slider(
|
33 |
+
minimum=0,
|
34 |
+
maximum=1,
|
35 |
+
value=0.5,
|
36 |
+
label="Class Threshold",
|
37 |
+
info="Confidence for each pixel to predict a class",
|
38 |
+
),
|
39 |
+
gr.Slider(
|
40 |
+
minimum=0,
|
41 |
+
maximum=10,
|
42 |
+
value=1,
|
43 |
+
label="Font Size",
|
44 |
+
info="Bounding box text size",
|
45 |
+
),
|
46 |
+
],
|
47 |
+
outputs=[
|
48 |
+
gr.Image(),
|
49 |
+
],
|
50 |
+
examples=[
|
51 |
+
[os.path.join("./sample/", f)]
|
52 |
+
for f in os.listdir("./sample/")
|
53 |
+
],
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
torchvision
|
4 |
+
numpy
|
5 |
+
grad-cam
|
6 |
+
Pillow
|
7 |
+
albumentations
|
8 |
+
tqdm
|
9 |
+
cv2
|
10 |
+
matplotlib
|
sample/bird_plane.jpeg
ADDED
sample/bird_plane_2.jpeg
ADDED
sample/cartoon.png
ADDED
sample/horse_person_cycle.jpeg
ADDED
sample/street.jpeg
ADDED
Git LFS Details
|
sample/street2.webp
ADDED
src/datasets/pascal_voc/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .dataset import YOLODataset
|
src/datasets/pascal_voc/dataset.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
from PIL import Image, ImageFile
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
|
13 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
14 |
+
|
15 |
+
|
16 |
+
class YOLODataset(Dataset):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
csv_file,
|
20 |
+
img_dir,
|
21 |
+
label_dir,
|
22 |
+
anchors,
|
23 |
+
image_size=416,
|
24 |
+
S=[13, 26, 52],
|
25 |
+
transform=None,
|
26 |
+
load_mosaic=True,
|
27 |
+
):
|
28 |
+
self.annotations = pd.read_csv(csv_file)
|
29 |
+
self.img_dir = img_dir
|
30 |
+
self.label_dir = label_dir
|
31 |
+
self.image_size = image_size
|
32 |
+
self.transform = transform
|
33 |
+
self.S = S
|
34 |
+
self.load_mosaic = load_mosaic
|
35 |
+
|
36 |
+
# shape: [number of states, number of anchors, 2]
|
37 |
+
self.anchors = torch.tensor(anchors)
|
38 |
+
self.num_anchors_per_scale = self.anchors.shape[1]
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.annotations)
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def iou(box, anchors):
|
45 |
+
"""
|
46 |
+
box:
|
47 |
+
tensor shape: [2]
|
48 |
+
anchors:
|
49 |
+
tensor shape: [number of states, number of anchors, 2]
|
50 |
+
|
51 |
+
* 2 above is for width and height
|
52 |
+
"""
|
53 |
+
|
54 |
+
intersection = torch.prod(torch.min(box, anchors), dim=-1)
|
55 |
+
union = torch.prod(box) + torch.prod(anchors, dim=-1) - intersection
|
56 |
+
return intersection / union
|
57 |
+
|
58 |
+
def __getitem__(self, index):
|
59 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
60 |
+
|
61 |
+
# bboxes = np.loadtxt(fname=label_path, delimiter=" ", ndmin=2)
|
62 |
+
bboxes = np.roll(
|
63 |
+
np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1
|
64 |
+
)
|
65 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
66 |
+
image = np.array(Image.open(img_path).convert("RGB"))
|
67 |
+
|
68 |
+
if self.transform:
|
69 |
+
augmentations = self.transform(image=image, bboxes=bboxes)
|
70 |
+
image = augmentations["image"]
|
71 |
+
bboxes = augmentations["bboxes"]
|
72 |
+
|
73 |
+
"""
|
74 |
+
Below assumes 3 scale predictions (as paper) and same num of anchors per scale
|
75 |
+
6 = [objectness, cx, cy, w, h, class]
|
76 |
+
"""
|
77 |
+
targets = [torch.zeros((self.num_anchors_per_scale, S, S, 6)) for S in self.S]
|
78 |
+
|
79 |
+
for bbox in bboxes:
|
80 |
+
iou = self.iou(torch.tensor(bbox[2:4]), self.anchors)
|
81 |
+
|
82 |
+
idx = torch.argsort(iou, descending=True, dim=-1)
|
83 |
+
idx = idx[:, 0].tolist()
|
84 |
+
|
85 |
+
dimensions, class_ = np.array(bbox[:-1]), bbox[-1] # +1
|
86 |
+
|
87 |
+
for scale_idx, anchor_id in enumerate(idx):
|
88 |
+
scale_dim = self.S[scale_idx]
|
89 |
+
scale_cx, scale_cy, scale_w, scale_h = dimensions * scale_dim
|
90 |
+
|
91 |
+
row, col = int(scale_cy), int(scale_cx)
|
92 |
+
|
93 |
+
# fill values
|
94 |
+
scale_cx = scale_cx - col
|
95 |
+
scale_cy = scale_cy - row
|
96 |
+
|
97 |
+
box_target = torch.tensor(
|
98 |
+
[1, scale_cx, scale_cy, scale_w, scale_h, class_]
|
99 |
+
)
|
100 |
+
|
101 |
+
targets[scale_idx][anchor_id, row, col] = box_target
|
102 |
+
|
103 |
+
return image, targets
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
from src.run.yolov3 import config
|
108 |
+
|
109 |
+
IMAGE_SIZE = config.IMAGE_SIZE
|
110 |
+
train_dataset = YOLODataset(
|
111 |
+
config.DATASET + "/2examples.csv",
|
112 |
+
transform=config.train_transforms,
|
113 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
114 |
+
img_dir=config.IMG_DIR,
|
115 |
+
label_dir=config.LABEL_DIR,
|
116 |
+
anchors=config.ANCHORS,
|
117 |
+
)
|
src/datasets/pascal_voc/mosaic.py
ADDED
File without changes
|
src/loss/yolov3/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .loss import YoloLoss
|
src/loss/yolov3/loss.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of Yolo Loss Function similar to the one in Yolov3 paper,
|
3 |
+
the difference from what I can tell is I use CrossEntropy for the classes
|
4 |
+
instead of BinaryCrossEntropy.
|
5 |
+
"""
|
6 |
+
import random
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class YoloLoss(nn.Module):
|
13 |
+
def __init__(self, nclasses):
|
14 |
+
super().__init__()
|
15 |
+
self.mse = nn.MSELoss()
|
16 |
+
self.bce = nn.BCEWithLogitsLoss()
|
17 |
+
self.entropy = nn.CrossEntropyLoss()
|
18 |
+
self.sigmoid = nn.Sigmoid()
|
19 |
+
|
20 |
+
# Constants signifying how much to pay for each respective part of the loss
|
21 |
+
self.lambda_class = 5 # 1.5
|
22 |
+
self.lambda_noobj = 2
|
23 |
+
self.lambda_obj = 1
|
24 |
+
self.lambda_box = 2
|
25 |
+
|
26 |
+
self.nclasses = nclasses
|
27 |
+
|
28 |
+
# intersection over union
|
29 |
+
@staticmethod
|
30 |
+
def iou(box1, box2):
|
31 |
+
"""
|
32 |
+
boxi shape = [any shape, 4] i.e [4] or [3,4] or [2,3,4] etc.
|
33 |
+
|
34 |
+
* 4 = [x, y, w, h]
|
35 |
+
|
36 |
+
output shape = [batch]
|
37 |
+
"""
|
38 |
+
# box1 x1, x2
|
39 |
+
box1_x1 = box1[..., 0] - box1[..., 2] / 2
|
40 |
+
box1_x2 = box1[..., 0] + box1[..., 2] / 2
|
41 |
+
|
42 |
+
# box2 x1, x2
|
43 |
+
box2_x1 = box2[..., 0] - box2[..., 2] / 2
|
44 |
+
box2_x2 = box2[..., 0] + box2[..., 2] / 2
|
45 |
+
|
46 |
+
# the width of intersection (x)
|
47 |
+
x1 = torch.max(box1_x1, box2_x1)
|
48 |
+
x2 = torch.min(box1_x2, box2_x2)
|
49 |
+
|
50 |
+
x = (x2 - x1).clamp(0)
|
51 |
+
|
52 |
+
# box1 y1, y2
|
53 |
+
box1_y1 = box1[..., 1] - box1[..., 3] / 2
|
54 |
+
box1_y2 = box1[..., 1] + box1[..., 3] / 2
|
55 |
+
|
56 |
+
# box2 y1, y2
|
57 |
+
box2_y1 = box2[..., 1] - box2[..., 3] / 2
|
58 |
+
box2_y2 = box2[..., 1] + box2[..., 3] / 2
|
59 |
+
|
60 |
+
# the height of intersection (y)
|
61 |
+
y1 = torch.max(box1_y1, box2_y1)
|
62 |
+
y2 = torch.min(box1_y2, box2_y2)
|
63 |
+
|
64 |
+
y = (y2 - y1).clamp(0)
|
65 |
+
|
66 |
+
# intersection
|
67 |
+
intersection = x * y
|
68 |
+
|
69 |
+
# union
|
70 |
+
area_box1 = (box1_x2 - box1_x1) * (box1_y2 - box1_y1)
|
71 |
+
area_box2 = (box2_x2 - box2_x1) * (box2_y2 - box2_y1)
|
72 |
+
|
73 |
+
union = area_box1 + area_box2 - intersection + 1e-6
|
74 |
+
|
75 |
+
return intersection / union
|
76 |
+
|
77 |
+
def forward(self, predictions, target, anchors):
|
78 |
+
"""
|
79 |
+
predictions: [batch, 3, 13, 13, 25] where 25 = [objectness, cx, cy, w, h] + 20 classes
|
80 |
+
target: [batch, 3, 13, 13, 6] where 6 = [objectness, cx, cy, w, h, true class]
|
81 |
+
anchors: [3, 2]
|
82 |
+
|
83 |
+
* 13 is S
|
84 |
+
* 3 is number of anchors
|
85 |
+
"""
|
86 |
+
obj = target[..., 0] == 1
|
87 |
+
noobj = target[..., 0] == 0
|
88 |
+
|
89 |
+
"""
|
90 |
+
both - no object and object loss
|
91 |
+
uncomment noobj above and below for only no_object_loss)
|
92 |
+
|
93 |
+
predictions shape: [batch, 3, 13, 13]
|
94 |
+
target shape: [batch, 3, 13, 13]
|
95 |
+
"""
|
96 |
+
no_object_loss = self.bce(predictions[..., 0][noobj], target[..., 0][noobj])
|
97 |
+
|
98 |
+
"""
|
99 |
+
object loss
|
100 |
+
|
101 |
+
predictions[..., 0][obj] shape: [total_object_in_batch]
|
102 |
+
target[..., 0][obj] shape: [total_object_in_batch]
|
103 |
+
"""
|
104 |
+
object_loss = self.bce(predictions[..., 0][obj], target[..., 0][obj])
|
105 |
+
|
106 |
+
anchors = anchors.reshape(1, 3, 1, 1, 2)
|
107 |
+
box_preds = torch.cat(
|
108 |
+
[
|
109 |
+
self.sigmoid(predictions[..., 1:3]),
|
110 |
+
torch.exp(predictions[..., 3:5]) * anchors,
|
111 |
+
],
|
112 |
+
dim=-1,
|
113 |
+
)
|
114 |
+
|
115 |
+
ious = self.iou(box_preds[obj], target[..., 1:5][obj]).detach()
|
116 |
+
object_loss += self.mse(
|
117 |
+
self.sigmoid(predictions[..., 0][obj]), ious * target[..., 0][obj]
|
118 |
+
)
|
119 |
+
|
120 |
+
"""
|
121 |
+
coordinate loss or box loss
|
122 |
+
|
123 |
+
predictions[..., 1:5][obj] shape: [total_obj_in_batch, 4]
|
124 |
+
target[..., 1:5][obj] shape: [total_obj_in_batch, 4]
|
125 |
+
"""
|
126 |
+
# x, y coordinates
|
127 |
+
predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3])
|
128 |
+
|
129 |
+
# width, height coordinates
|
130 |
+
target[..., 3:5] = torch.log((1e-16 + target[..., 3:5] / anchors))
|
131 |
+
box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])
|
132 |
+
|
133 |
+
"""
|
134 |
+
classification loss : cross entropy
|
135 |
+
|
136 |
+
predictions[..., 5:][obj] shape: [total_obj_in_batch, nclasses]
|
137 |
+
target[..., 5][obj].long() shape: [total_obj_in_batch]
|
138 |
+
"""
|
139 |
+
class_loss = self.entropy(
|
140 |
+
(predictions[..., 5:][obj]),
|
141 |
+
(target[..., 5][obj].long()),
|
142 |
+
)
|
143 |
+
|
144 |
+
"""
|
145 |
+
classification loss : binary cross entropy
|
146 |
+
|
147 |
+
This is my innovation: could be wrong
|
148 |
+
Train and test without it as well.
|
149 |
+
"""
|
150 |
+
binary_class_loss = self.bce(
|
151 |
+
predictions[..., 5:][obj],
|
152 |
+
F.one_hot(target[..., 5][obj].long(), num_classes=self.nclasses).float(),
|
153 |
+
)
|
154 |
+
|
155 |
+
return (
|
156 |
+
self.lambda_box * box_loss
|
157 |
+
+ self.lambda_obj * object_loss
|
158 |
+
+ self.lambda_noobj * no_object_loss
|
159 |
+
+ self.lambda_class * class_loss
|
160 |
+
+ self.lambda_class * binary_class_loss
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
from src.run.yolov3 import config
|
166 |
+
from src.datasets.pascal_voc import YOLODataset
|
167 |
+
|
168 |
+
S = 13
|
169 |
+
yl = YoloLoss(nclasses=20)
|
170 |
+
|
171 |
+
predictions = torch.rand((20, 3, S, S, 25))
|
172 |
+
|
173 |
+
# build target
|
174 |
+
IMAGE_SIZE = config.IMAGE_SIZE
|
175 |
+
|
176 |
+
train_dataset = YOLODataset(
|
177 |
+
config.DATASET + "/train.csv",
|
178 |
+
transform=None, # config.train_transforms,
|
179 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
180 |
+
img_dir=config.IMG_DIR,
|
181 |
+
label_dir=config.LABEL_DIR,
|
182 |
+
anchors=config.ANCHORS,
|
183 |
+
)
|
184 |
+
_, target = train_dataset[3]
|
185 |
+
target = target[0].unsqueeze(0) # target[0] if S=13
|
186 |
+
target = torch.cat([target, target] * 10)
|
187 |
+
|
188 |
+
# anchor
|
189 |
+
anchor = S * train_dataset.anchors[0]
|
190 |
+
|
191 |
+
print(yl(predictions, target, anchor))
|
src/model/yolov3/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import YOLOv3
|
src/model/yolov3/model.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of YOLOv3 architecture
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
"""
|
9 |
+
Information about architecture config:
|
10 |
+
Tuple is structured by (filters, kernel_size, stride)
|
11 |
+
Every conv is a same convolution.
|
12 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
13 |
+
"S" is for scale prediction block and computing the yolo loss
|
14 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
15 |
+
"""
|
16 |
+
model_config = [
|
17 |
+
(32, 3, 1),
|
18 |
+
(64, 3, 2),
|
19 |
+
["B", 1],
|
20 |
+
(128, 3, 2),
|
21 |
+
["B", 2],
|
22 |
+
(256, 3, 2),
|
23 |
+
["B", 8],
|
24 |
+
(512, 3, 2),
|
25 |
+
["B", 8],
|
26 |
+
(1024, 3, 2),
|
27 |
+
["B", 4], # To this point is Darknet-53
|
28 |
+
(512, 1, 1),
|
29 |
+
(1024, 3, 1),
|
30 |
+
"S",
|
31 |
+
(256, 1, 1),
|
32 |
+
"U",
|
33 |
+
(256, 1, 1),
|
34 |
+
(512, 3, 1),
|
35 |
+
"S",
|
36 |
+
(128, 1, 1),
|
37 |
+
"U",
|
38 |
+
(128, 1, 1),
|
39 |
+
(256, 3, 1),
|
40 |
+
"S",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
class CNNBlock(nn.Module):
|
45 |
+
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
46 |
+
super().__init__()
|
47 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
48 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
49 |
+
self.leaky = nn.LeakyReLU(0.1)
|
50 |
+
self.use_bn_act = bn_act
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
if self.use_bn_act:
|
54 |
+
return self.leaky(self.bn(self.conv(x)))
|
55 |
+
else:
|
56 |
+
return self.conv(x)
|
57 |
+
|
58 |
+
|
59 |
+
class ResidualBlock(nn.Module):
|
60 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
61 |
+
super().__init__()
|
62 |
+
self.layers = nn.ModuleList()
|
63 |
+
for repeat in range(num_repeats):
|
64 |
+
self.layers += [
|
65 |
+
nn.Sequential(
|
66 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
67 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
68 |
+
)
|
69 |
+
]
|
70 |
+
|
71 |
+
self.use_residual = use_residual
|
72 |
+
self.num_repeats = num_repeats
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
for layer in self.layers:
|
76 |
+
if self.use_residual:
|
77 |
+
x = x + layer(x)
|
78 |
+
else:
|
79 |
+
x = layer(x)
|
80 |
+
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class ScalePrediction(nn.Module):
|
85 |
+
def __init__(self, in_channels, num_classes):
|
86 |
+
super().__init__()
|
87 |
+
self.pred = nn.Sequential(
|
88 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
89 |
+
CNNBlock(
|
90 |
+
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
91 |
+
),
|
92 |
+
)
|
93 |
+
self.num_classes = num_classes
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
x = (
|
97 |
+
self.pred(x)
|
98 |
+
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
|
99 |
+
.permute(0, 1, 3, 4, 2)
|
100 |
+
)
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
class YOLOv3(nn.Module):
|
105 |
+
def __init__(self, in_channels=3, num_classes=80):
|
106 |
+
super().__init__()
|
107 |
+
self.num_classes = num_classes
|
108 |
+
self.in_channels = in_channels
|
109 |
+
self.layers = self._create_conv_layers()
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
outputs = [] # for each scale
|
113 |
+
route_connections = []
|
114 |
+
|
115 |
+
for layer in self.layers:
|
116 |
+
if isinstance(layer, ScalePrediction):
|
117 |
+
outputs.append(layer(x))
|
118 |
+
continue
|
119 |
+
|
120 |
+
x = layer(x)
|
121 |
+
|
122 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
123 |
+
route_connections.append(x)
|
124 |
+
|
125 |
+
elif isinstance(layer, nn.Upsample):
|
126 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
127 |
+
route_connections.pop()
|
128 |
+
|
129 |
+
return outputs
|
130 |
+
|
131 |
+
def _create_conv_layers(self):
|
132 |
+
layers = nn.ModuleList()
|
133 |
+
in_channels = self.in_channels
|
134 |
+
|
135 |
+
for module in model_config:
|
136 |
+
if isinstance(module, tuple):
|
137 |
+
out_channels, kernel_size, stride = module
|
138 |
+
layers.append(
|
139 |
+
CNNBlock(
|
140 |
+
in_channels,
|
141 |
+
out_channels,
|
142 |
+
kernel_size=kernel_size,
|
143 |
+
stride=stride,
|
144 |
+
padding=1 if kernel_size == 3 else 0,
|
145 |
+
)
|
146 |
+
)
|
147 |
+
in_channels = out_channels
|
148 |
+
|
149 |
+
elif isinstance(module, list):
|
150 |
+
num_repeats = module[1]
|
151 |
+
layers.append(
|
152 |
+
ResidualBlock(
|
153 |
+
in_channels,
|
154 |
+
num_repeats=num_repeats,
|
155 |
+
)
|
156 |
+
)
|
157 |
+
|
158 |
+
elif isinstance(module, str):
|
159 |
+
if module == "S":
|
160 |
+
layers += [
|
161 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
162 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
163 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
164 |
+
]
|
165 |
+
in_channels = in_channels // 2
|
166 |
+
|
167 |
+
elif module == "U":
|
168 |
+
layers.append(
|
169 |
+
nn.Upsample(scale_factor=2),
|
170 |
+
)
|
171 |
+
in_channels = in_channels * 3
|
172 |
+
|
173 |
+
return layers
|
src/run/__init__.py
ADDED
File without changes
|
src/run/yolov3/config.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from albumentations.pytorch import ToTensorV2
|
5 |
+
|
6 |
+
|
7 |
+
DATASET = "PASCAL_VOC"
|
8 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
NUM_WORKERS = 0
|
11 |
+
BATCH_SIZE = 32
|
12 |
+
IMAGE_SIZE = 416
|
13 |
+
NUM_CLASSES = 20
|
14 |
+
LEARNING_RATE = 1e-5
|
15 |
+
WEIGHT_DECAY = 1e-4
|
16 |
+
NUM_EPOCHS = 100
|
17 |
+
CONF_THRESHOLD = 0.05
|
18 |
+
MAP_IOU_THRESH = 0.5
|
19 |
+
NMS_IOU_THRESH = 0.45
|
20 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
21 |
+
PIN_MEMORY = True
|
22 |
+
LOAD_MODEL = False
|
23 |
+
SAVE_MODEL = True
|
24 |
+
CHECKPOINT_FILE = "checkpoint.pth.tar"
|
25 |
+
IMG_DIR = DATASET + "/images/"
|
26 |
+
LABEL_DIR = DATASET + "/labels/"
|
27 |
+
|
28 |
+
ANCHORS = [
|
29 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
30 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
31 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
32 |
+
] # Note these have been rescaled to be between [0, 1]
|
33 |
+
|
34 |
+
means = [0.485, 0.456, 0.406]
|
35 |
+
|
36 |
+
scale = 1.1
|
37 |
+
train_transforms = A.Compose(
|
38 |
+
[
|
39 |
+
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
|
40 |
+
A.PadIfNeeded(
|
41 |
+
min_height=int(IMAGE_SIZE * scale),
|
42 |
+
min_width=int(IMAGE_SIZE * scale),
|
43 |
+
border_mode=cv2.BORDER_CONSTANT,
|
44 |
+
),
|
45 |
+
A.Rotate(limit=10, interpolation=1, border_mode=4),
|
46 |
+
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
|
47 |
+
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
|
48 |
+
A.OneOf(
|
49 |
+
[
|
50 |
+
A.ShiftScaleRotate(
|
51 |
+
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
|
52 |
+
),
|
53 |
+
# A.Affine(shear=15, p=0.5, mode="constant"),
|
54 |
+
],
|
55 |
+
p=1.0,
|
56 |
+
),
|
57 |
+
A.HorizontalFlip(p=0.5),
|
58 |
+
A.Blur(p=0.1),
|
59 |
+
A.CLAHE(p=0.1),
|
60 |
+
A.Posterize(p=0.1),
|
61 |
+
A.ToGray(p=0.1),
|
62 |
+
A.ChannelShuffle(p=0.05),
|
63 |
+
A.Normalize(
|
64 |
+
mean=[0, 0, 0],
|
65 |
+
std=[1, 1, 1],
|
66 |
+
max_pixel_value=255,
|
67 |
+
),
|
68 |
+
ToTensorV2(),
|
69 |
+
],
|
70 |
+
bbox_params=A.BboxParams(
|
71 |
+
format="yolo",
|
72 |
+
min_visibility=0.4,
|
73 |
+
label_fields=[],
|
74 |
+
),
|
75 |
+
)
|
76 |
+
test_transforms = A.Compose(
|
77 |
+
[
|
78 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
79 |
+
A.PadIfNeeded(
|
80 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
81 |
+
),
|
82 |
+
A.Normalize(
|
83 |
+
mean=[0, 0, 0],
|
84 |
+
std=[1, 1, 1],
|
85 |
+
max_pixel_value=255,
|
86 |
+
),
|
87 |
+
ToTensorV2(),
|
88 |
+
],
|
89 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
|
90 |
+
)
|
91 |
+
|
92 |
+
PASCAL_CLASSES = [
|
93 |
+
"aeroplane",
|
94 |
+
"bicycle",
|
95 |
+
"bird",
|
96 |
+
"boat",
|
97 |
+
"bottle",
|
98 |
+
"bus",
|
99 |
+
"car",
|
100 |
+
"cat",
|
101 |
+
"chair",
|
102 |
+
"cow",
|
103 |
+
"diningtable",
|
104 |
+
"dog",
|
105 |
+
"horse",
|
106 |
+
"motorbike",
|
107 |
+
"person",
|
108 |
+
"pottedplant",
|
109 |
+
"sheep",
|
110 |
+
"sofa",
|
111 |
+
"train",
|
112 |
+
"tvmonitor",
|
113 |
+
]
|
114 |
+
|
115 |
+
COCO_LABELS = [
|
116 |
+
"person",
|
117 |
+
"bicycle",
|
118 |
+
"car",
|
119 |
+
"motorcycle",
|
120 |
+
"airplane",
|
121 |
+
"bus",
|
122 |
+
"train",
|
123 |
+
"truck",
|
124 |
+
"boat",
|
125 |
+
"traffic light",
|
126 |
+
"fire hydrant",
|
127 |
+
"stop sign",
|
128 |
+
"parking meter",
|
129 |
+
"bench",
|
130 |
+
"bird",
|
131 |
+
"cat",
|
132 |
+
"dog",
|
133 |
+
"horse",
|
134 |
+
"sheep",
|
135 |
+
"cow",
|
136 |
+
"elephant",
|
137 |
+
"bear",
|
138 |
+
"zebra",
|
139 |
+
"giraffe",
|
140 |
+
"backpack",
|
141 |
+
"umbrella",
|
142 |
+
"handbag",
|
143 |
+
"tie",
|
144 |
+
"suitcase",
|
145 |
+
"frisbee",
|
146 |
+
"skis",
|
147 |
+
"snowboard",
|
148 |
+
"sports ball",
|
149 |
+
"kite",
|
150 |
+
"baseball bat",
|
151 |
+
"baseball glove",
|
152 |
+
"skateboard",
|
153 |
+
"surfboard",
|
154 |
+
"tennis racket",
|
155 |
+
"bottle",
|
156 |
+
"wine glass",
|
157 |
+
"cup",
|
158 |
+
"fork",
|
159 |
+
"knife",
|
160 |
+
"spoon",
|
161 |
+
"bowl",
|
162 |
+
"banana",
|
163 |
+
"apple",
|
164 |
+
"sandwich",
|
165 |
+
"orange",
|
166 |
+
"broccoli",
|
167 |
+
"carrot",
|
168 |
+
"hot dog",
|
169 |
+
"pizza",
|
170 |
+
"donut",
|
171 |
+
"cake",
|
172 |
+
"chair",
|
173 |
+
"couch",
|
174 |
+
"potted plant",
|
175 |
+
"bed",
|
176 |
+
"dining table",
|
177 |
+
"toilet",
|
178 |
+
"tv",
|
179 |
+
"laptop",
|
180 |
+
"mouse",
|
181 |
+
"remote",
|
182 |
+
"keyboard",
|
183 |
+
"cell phone",
|
184 |
+
"microwave",
|
185 |
+
"oven",
|
186 |
+
"toaster",
|
187 |
+
"sink",
|
188 |
+
"refrigerator",
|
189 |
+
"book",
|
190 |
+
"clock",
|
191 |
+
"vase",
|
192 |
+
"scissors",
|
193 |
+
"teddy bear",
|
194 |
+
"hair drier",
|
195 |
+
"toothbrush",
|
196 |
+
]
|
src/run/yolov3/dataloader.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import DataLoader
|
2 |
+
from src.run.yolov3 import config
|
3 |
+
from src.datasets.pascal_voc import YOLODataset
|
4 |
+
|
5 |
+
|
6 |
+
def get_loaders(train_csv_path, test_csv_path):
|
7 |
+
IMAGE_SIZE = config.IMAGE_SIZE
|
8 |
+
train_dataset = YOLODataset(
|
9 |
+
train_csv_path,
|
10 |
+
transform=config.train_transforms,
|
11 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
12 |
+
img_dir=config.IMG_DIR,
|
13 |
+
label_dir=config.LABEL_DIR,
|
14 |
+
anchors=config.ANCHORS,
|
15 |
+
)
|
16 |
+
test_dataset = YOLODataset(
|
17 |
+
test_csv_path,
|
18 |
+
transform=config.test_transforms,
|
19 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
20 |
+
img_dir=config.IMG_DIR,
|
21 |
+
label_dir=config.LABEL_DIR,
|
22 |
+
anchors=config.ANCHORS,
|
23 |
+
)
|
24 |
+
train_loader = DataLoader(
|
25 |
+
dataset=train_dataset,
|
26 |
+
batch_size=config.BATCH_SIZE,
|
27 |
+
num_workers=config.NUM_WORKERS,
|
28 |
+
pin_memory=config.PIN_MEMORY,
|
29 |
+
shuffle=True,
|
30 |
+
drop_last=False,
|
31 |
+
)
|
32 |
+
test_loader = DataLoader(
|
33 |
+
dataset=test_dataset,
|
34 |
+
batch_size=config.BATCH_SIZE,
|
35 |
+
num_workers=config.NUM_WORKERS,
|
36 |
+
pin_memory=config.PIN_MEMORY,
|
37 |
+
shuffle=False,
|
38 |
+
drop_last=False,
|
39 |
+
)
|
40 |
+
|
41 |
+
train_eval_dataset = YOLODataset(
|
42 |
+
train_csv_path,
|
43 |
+
transform=config.test_transforms,
|
44 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
45 |
+
img_dir=config.IMG_DIR,
|
46 |
+
label_dir=config.LABEL_DIR,
|
47 |
+
anchors=config.ANCHORS,
|
48 |
+
)
|
49 |
+
train_eval_loader = DataLoader(
|
50 |
+
dataset=train_eval_dataset,
|
51 |
+
batch_size=config.BATCH_SIZE,
|
52 |
+
num_workers=config.NUM_WORKERS,
|
53 |
+
pin_memory=config.PIN_MEMORY,
|
54 |
+
shuffle=False,
|
55 |
+
drop_last=False,
|
56 |
+
)
|
57 |
+
|
58 |
+
return train_loader, test_loader, train_eval_loader
|
src/run/yolov3/example/yolov3.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/run/yolov3/inference.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import albumentations as A
|
4 |
+
import cv2
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from albumentations.pytorch import ToTensorV2
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from src.loss.yolov3 import YoloLoss
|
13 |
+
from src.model.yolov3 import YOLOv3 as Model
|
14 |
+
from src.run.yolov3 import config
|
15 |
+
|
16 |
+
|
17 |
+
class YoloInfer:
|
18 |
+
def __init__(self, model_path):
|
19 |
+
self.model = self.load_model(model_path=model_path)
|
20 |
+
self.transform = A.Compose(
|
21 |
+
[
|
22 |
+
A.Resize(config.IMAGE_SIZE, config.IMAGE_SIZE),
|
23 |
+
A.Normalize(
|
24 |
+
mean=[0, 0, 0],
|
25 |
+
std=[1, 1, 1],
|
26 |
+
max_pixel_value=255,
|
27 |
+
),
|
28 |
+
ToTensorV2(),
|
29 |
+
]
|
30 |
+
)
|
31 |
+
|
32 |
+
self.scaled_anchors = (
|
33 |
+
torch.tensor(config.ANCHORS) * torch.tensor(config.S).reshape(-1, 1, 1)
|
34 |
+
).to(config.DEVICE)
|
35 |
+
|
36 |
+
def load_model(self, model_path):
|
37 |
+
model = Model(num_classes=config.NUM_CLASSES).to(config.DEVICE)
|
38 |
+
|
39 |
+
if os.path.isfile(model_path):
|
40 |
+
checkpoint = torch.load(model_path, map_location=config.DEVICE)
|
41 |
+
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
|
42 |
+
|
43 |
+
return model
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def pred_to_boxes(prediction, anchors):
|
47 |
+
"""
|
48 |
+
prediction tensor = [batch, num_anchors_per_scale, scale, scale, 5 + num_classes]
|
49 |
+
5 = [objness, cx, cy, w, h]
|
50 |
+
anchors tensor = [num_anchors_per_scale, 2]
|
51 |
+
|
52 |
+
Note: The below operation could been done entirely inplace.
|
53 |
+
Slightly unoptimsed implementation below to maintain readability
|
54 |
+
|
55 |
+
Output shape: [batch, num_anchors_per_scale, scale, scale, 7]
|
56 |
+
7: [predicted_class's_idx, obj score, cx, cy, width, height, predicted class probability score]
|
57 |
+
"""
|
58 |
+
scale = prediction.shape[2]
|
59 |
+
|
60 |
+
# reversing the equations of box loss and obj in the loss function
|
61 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
62 |
+
cx_cy = torch.sigmoid(prediction[..., 1:3])
|
63 |
+
width_height = anchors * torch.exp(prediction[..., 3:5])
|
64 |
+
|
65 |
+
# reversing the equations we wrote while making training data
|
66 |
+
arange = torch.arange(scale, device=config.DEVICE)
|
67 |
+
cx = (arange.reshape(1, 1, 1, scale, 1) + cx_cy[..., 0:1]) / scale
|
68 |
+
cy = (arange.reshape(1, 1, scale, 1, 1) + cx_cy[..., 1:2]) / scale
|
69 |
+
width_height = width_height / scale
|
70 |
+
|
71 |
+
# class prediction
|
72 |
+
class_predictions = torch.softmax(prediction[..., 5:], dim=-1)
|
73 |
+
class_score, class_idx = torch.max(class_predictions, dim=-1)
|
74 |
+
class_score, class_idx = class_score.unsqueeze(-1), class_idx.unsqueeze(-1)
|
75 |
+
|
76 |
+
# objectness score
|
77 |
+
obj_score = torch.sigmoid(prediction[..., 0:1])
|
78 |
+
return torch.cat(
|
79 |
+
[class_idx, obj_score, cx, cy, width_height, class_score], dim=-1
|
80 |
+
)
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def sort_3Dtensor_rows_on_two_columns(
|
84 |
+
tensor, index1, index2, descending1=True, descending2=True
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
tensor = tensor([[[1, 2, 3],
|
88 |
+
[1, 3, 4],
|
89 |
+
[0, 2, 1]],
|
90 |
+
|
91 |
+
[[0, 2, 3],
|
92 |
+
[1, 4, 5],
|
93 |
+
[0, 1, 2]]])
|
94 |
+
|
95 |
+
sort_tensor_rows_on_two_columns(tensor,
|
96 |
+
index1=0,
|
97 |
+
index2=1,
|
98 |
+
descending1=False,
|
99 |
+
descending2=True)
|
100 |
+
|
101 |
+
output = tensor([[[0, 2, 1],
|
102 |
+
[1, 3, 4],
|
103 |
+
[1, 2, 3]],
|
104 |
+
|
105 |
+
[[0, 2, 3],
|
106 |
+
[0, 1, 2],
|
107 |
+
[1, 4, 5]]])
|
108 |
+
"""
|
109 |
+
inner_sorting = torch.argsort(tensor[..., index2], descending=descending1)
|
110 |
+
inner_sorted = torch.gather(
|
111 |
+
tensor, 1, inner_sorting.unsqueeze(-1).expand(-1, -1, tensor.size(2))
|
112 |
+
)
|
113 |
+
|
114 |
+
outer_sorting = torch.argsort(
|
115 |
+
inner_sorted[:, :, index1], stable=True, descending=descending2
|
116 |
+
)
|
117 |
+
outer_sorted = torch.gather(
|
118 |
+
inner_sorted,
|
119 |
+
1,
|
120 |
+
outer_sorting.unsqueeze(-1).expand(-1, -1, inner_sorted.size(2)),
|
121 |
+
)
|
122 |
+
return outer_sorted
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def non_max_supression(
|
126 |
+
prediction, iou_threshold, object_threshold, class_threshold
|
127 |
+
):
|
128 |
+
"""
|
129 |
+
prediction = [batch, summation(num_anchors_per_scale * scale * scale), 7]
|
130 |
+
i.e. [batch, (3 * 13 * 13 + 3 * 26 * 26 + 3 * 52 * 52), 7]
|
131 |
+
|
132 |
+
7: [class_pred, obj_score, cx, cy, width, height, class_score]
|
133 |
+
"""
|
134 |
+
"""
|
135 |
+
inside each batch output,
|
136 |
+
first sort by class prediction,
|
137 |
+
and inside each class sort objectness in descending
|
138 |
+
"""
|
139 |
+
prediction = YoloInfer.sort_3Dtensor_rows_on_two_columns(
|
140 |
+
tensor=prediction, index1=0, index2=1, descending1=True, descending2=True
|
141 |
+
)
|
142 |
+
|
143 |
+
"""
|
144 |
+
remove predictions with object threshold below the given threshold
|
145 |
+
and split prediction to get a list of tensors
|
146 |
+
|
147 |
+
length of list = batch size
|
148 |
+
each element in the list = results/output of 1 image
|
149 |
+
"""
|
150 |
+
# objectness condition [threshold]
|
151 |
+
objectness = (prediction[..., 1] > object_threshold) & (
|
152 |
+
prediction[..., 6] > class_threshold
|
153 |
+
)
|
154 |
+
indices = torch.nonzero(objectness)
|
155 |
+
batch_boxes = torch.split(
|
156 |
+
tensor=prediction[objectness],
|
157 |
+
split_size_or_sections=torch.bincount(indices[:, 0]).tolist(),
|
158 |
+
dim=0,
|
159 |
+
)
|
160 |
+
|
161 |
+
# iterate for output
|
162 |
+
output = []
|
163 |
+
|
164 |
+
for boxes in tqdm(batch_boxes, disable=True):
|
165 |
+
# boxes shape = [-1, 7]
|
166 |
+
boxes = boxes.tolist()
|
167 |
+
final_boxes = []
|
168 |
+
|
169 |
+
while boxes:
|
170 |
+
top_box = boxes.pop(0)
|
171 |
+
|
172 |
+
idx = 0
|
173 |
+
|
174 |
+
while idx < len(boxes):
|
175 |
+
box = boxes[idx]
|
176 |
+
|
177 |
+
# class match
|
178 |
+
if box[0] != top_box[0]:
|
179 |
+
break
|
180 |
+
|
181 |
+
# iou match
|
182 |
+
if (
|
183 |
+
YoloLoss.iou(torch.tensor(top_box[2:6]), torch.tensor(box[2:6]))
|
184 |
+
> iou_threshold
|
185 |
+
):
|
186 |
+
del boxes[idx]
|
187 |
+
|
188 |
+
idx -= 1
|
189 |
+
|
190 |
+
idx += 1
|
191 |
+
|
192 |
+
final_boxes.append(top_box)
|
193 |
+
|
194 |
+
output.append(final_boxes)
|
195 |
+
|
196 |
+
return output
|
197 |
+
|
198 |
+
@staticmethod
|
199 |
+
def draw_bounding_boxes(image, boxes, font_size=1):
|
200 |
+
"""Draws bounding boxes on the image using OpenCV"""
|
201 |
+
cmap = plt.get_cmap("tab20b")
|
202 |
+
class_labels = (
|
203 |
+
config.COCO_LABELS if config.DATASET == "COCO" else config.PASCAL_CLASSES
|
204 |
+
)
|
205 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
206 |
+
im = np.array(image)
|
207 |
+
height, width, _ = im.shape
|
208 |
+
|
209 |
+
# font = ImageFont.truetype("DejaVuSans.ttf", 20) # Load the DejaVuSans font
|
210 |
+
|
211 |
+
for box in boxes:
|
212 |
+
assert (
|
213 |
+
len(box) == 7
|
214 |
+
), "box should contain class pred, confidence, x, y, width, height, class score"
|
215 |
+
class_pred = box[0]
|
216 |
+
class_score = round(box[-1], 2)
|
217 |
+
|
218 |
+
upper_left_x = int((box[2] - box[4] / 2) * width)
|
219 |
+
upper_left_y = int((box[3] - box[5] / 2) * height)
|
220 |
+
lower_right_x = int((box[2] + box[4] / 2) * width)
|
221 |
+
lower_right_y = int((box[3] + box[5] / 2) * height)
|
222 |
+
|
223 |
+
color = colors[int(class_pred)]
|
224 |
+
color_rgb = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
|
225 |
+
thickness = max(
|
226 |
+
int((0.0005 * (image.shape[0] + image.shape[1]) / 2) + 1), 1
|
227 |
+
)
|
228 |
+
|
229 |
+
cv2.rectangle(
|
230 |
+
im,
|
231 |
+
(upper_left_x, upper_left_y),
|
232 |
+
(lower_right_x, lower_right_y),
|
233 |
+
color_rgb,
|
234 |
+
thickness=thickness,
|
235 |
+
)
|
236 |
+
|
237 |
+
# label
|
238 |
+
font_scale = font_size
|
239 |
+
label = f"{class_labels[int(class_pred)]} {class_score}"
|
240 |
+
text_size = cv2.getTextSize(
|
241 |
+
label,
|
242 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
243 |
+
fontScale=font_scale,
|
244 |
+
thickness=1,
|
245 |
+
)[0]
|
246 |
+
|
247 |
+
# Draw rectangle background
|
248 |
+
cv2.rectangle(
|
249 |
+
im,
|
250 |
+
(upper_left_x, upper_left_y),
|
251 |
+
(upper_left_x + text_size[0], upper_left_y - text_size[1]),
|
252 |
+
color_rgb,
|
253 |
+
thickness=-1,
|
254 |
+
)
|
255 |
+
cv2.putText(
|
256 |
+
im,
|
257 |
+
label,
|
258 |
+
(upper_left_x, upper_left_y),
|
259 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
260 |
+
fontScale=font_scale,
|
261 |
+
color=[0, 0, 0],
|
262 |
+
thickness=1,
|
263 |
+
lineType=cv2.LINE_AA,
|
264 |
+
)
|
265 |
+
|
266 |
+
return im
|
267 |
+
|
268 |
+
def infer(
|
269 |
+
self,
|
270 |
+
image: np.array,
|
271 |
+
iou_threshold=0.75,
|
272 |
+
object_threshold=0.75,
|
273 |
+
class_threshold=0.5,
|
274 |
+
font_size=1,
|
275 |
+
):
|
276 |
+
self.model.eval()
|
277 |
+
input_tensor = self.transform(image=image)["image"].unsqueeze(0)
|
278 |
+
|
279 |
+
with torch.no_grad():
|
280 |
+
"""
|
281 |
+
output = list of tensors
|
282 |
+
tensor shape=[batch, num_anchors_per_scale, scale, scale, 5 + num_classes]
|
283 |
+
"""
|
284 |
+
output = self.model(input_tensor.to(config.DEVICE))
|
285 |
+
|
286 |
+
# convert model prediction to actual box prediction
|
287 |
+
output = torch.cat(
|
288 |
+
[
|
289 |
+
self.pred_to_boxes(out, self.scaled_anchors[idx]).reshape(
|
290 |
+
out.shape[0], -1, 7
|
291 |
+
)
|
292 |
+
for idx, out in enumerate(output)
|
293 |
+
],
|
294 |
+
dim=1,
|
295 |
+
)
|
296 |
+
|
297 |
+
# non max suppression
|
298 |
+
output = self.non_max_supression(
|
299 |
+
prediction=output,
|
300 |
+
iou_threshold=iou_threshold,
|
301 |
+
object_threshold=object_threshold,
|
302 |
+
class_threshold=class_threshold,
|
303 |
+
)
|
304 |
+
|
305 |
+
return self.draw_bounding_boxes(image, output[0], font_size=font_size)
|
306 |
+
|
307 |
+
@staticmethod
|
308 |
+
def load_image_as_array(image_path):
|
309 |
+
# Load a PIL image
|
310 |
+
pil_image = Image.open(image_path)
|
311 |
+
|
312 |
+
# Convert PIL image to NumPy array
|
313 |
+
return np.array(pil_image.convert("RGB"))
|
314 |
+
|
315 |
+
@staticmethod
|
316 |
+
def plot_array(array: np.array, figsize=(10, 10)):
|
317 |
+
plt.figure(figsize=figsize)
|
318 |
+
plt.imshow(array)
|
319 |
+
plt.show()
|
320 |
+
|
321 |
+
@staticmethod
|
322 |
+
def save_numpy_as_image(numpy_array, image_path):
|
323 |
+
"""
|
324 |
+
Saves a NumPy array as an image.
|
325 |
+
Args:
|
326 |
+
numpy_array (numpy.ndarray): The NumPy array to be saved as an image.
|
327 |
+
image_path (str): The path where the image will be saved.
|
328 |
+
"""
|
329 |
+
# Convert the NumPy array to a PIL image
|
330 |
+
image = Image.fromarray(numpy_array)
|
331 |
+
|
332 |
+
# Save the PIL image to the specified path
|
333 |
+
image.save(image_path)
|
src/run/yolov3/train.py
ADDED
File without changes
|