|
from torch import nn |
|
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout, MaxPool2d, \ |
|
AdaptiveAvgPool2d, Sequential, Module |
|
import torch |
|
from collections import namedtuple |
|
|
|
|
|
class IDComparator(nn.Module): |
|
def __init__(self): |
|
super(IDComparator, self).__init__() |
|
self.backbone = SE_IR(50, drop_ratio=0.4, mode='ir_se') |
|
self.backbone.load_state_dict(torch.load('models/pretrained/arcface/model_ir_se50.pth')) |
|
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) |
|
self.criterion = nn.CosineSimilarity(dim=1, eps=1e-6) |
|
|
|
def extract_feats(self, x): |
|
|
|
x = x[:, :, 35:223, 32:220] |
|
return self.backbone(self.face_pool(x)) |
|
|
|
def forward(self, x, x_prime): |
|
return self.criterion(self.extract_feats(x), self.extract_feats(x_prime)).mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Flatten(Module): |
|
@staticmethod |
|
def forward(x): |
|
return x.view(x.size(0), -1) |
|
|
|
|
|
def l2_norm(x, axis=1): |
|
norm = torch.norm(x, 2, axis, True) |
|
output = torch.div(x, norm) |
|
return output |
|
|
|
|
|
class SEModule(Module): |
|
def __init__(self, channels, reduction): |
|
super(SEModule, self).__init__() |
|
self.avg_pool = AdaptiveAvgPool2d(1) |
|
self.fc1 = Conv2d( |
|
channels, channels // reduction, kernel_size=(1, 1), padding=0, bias=False) |
|
self.relu = ReLU(inplace=True) |
|
self.fc2 = Conv2d( |
|
channels // reduction, channels, kernel_size=(1, 1), padding=0, bias=False) |
|
self.sigmoid = Sigmoid() |
|
|
|
def forward(self, x): |
|
module_input = x |
|
x = self.avg_pool(x) |
|
x = self.fc1(x) |
|
x = self.relu(x) |
|
x = self.fc2(x) |
|
x = self.sigmoid(x) |
|
return module_input * x |
|
|
|
|
|
class bottleneck_IR(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth)) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
return res + shortcut |
|
|
|
|
|
class bottleneck_IR_SE(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR_SE, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth)) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
BatchNorm2d(depth), |
|
SEModule(depth, 16) |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
return res + shortcut |
|
|
|
|
|
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): |
|
"""A named tuple describing a ResNet block.""" |
|
|
|
|
|
def get_block(in_channel, depth, num_units, stride=2): |
|
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for _ in range(num_units - 1)] |
|
|
|
|
|
def get_blocks(num_layers): |
|
if num_layers == 50: |
|
return [get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=4), |
|
get_block(in_channel=128, depth=256, num_units=14), |
|
get_block(in_channel=256, depth=512, num_units=3)] |
|
|
|
elif num_layers == 100: |
|
return [get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=13), |
|
get_block(in_channel=128, depth=256, num_units=30), |
|
get_block(in_channel=256, depth=512, num_units=3)] |
|
elif num_layers == 152: |
|
return [get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=8), |
|
get_block(in_channel=128, depth=256, num_units=36), |
|
get_block(in_channel=256, depth=512, num_units=3)] |
|
|
|
|
|
class SE_IR(Module): |
|
def __init__(self, num_layers, drop_ratio=0.4, mode='ir_se'): |
|
super(SE_IR, self).__init__() |
|
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' |
|
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' |
|
|
|
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), (1, 1), 1, bias=False), |
|
BatchNorm2d(64), |
|
PReLU(64)) |
|
self.output_layer = Sequential(BatchNorm2d(512), |
|
Dropout(drop_ratio), |
|
Flatten(), |
|
Linear(512 * 7 * 7, 512), |
|
BatchNorm1d(512)) |
|
modules = [] |
|
blocks = get_blocks(num_layers) |
|
if mode == 'ir': |
|
for block in blocks: |
|
for bottleneck in block: |
|
modules.append(bottleneck_IR(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) |
|
elif mode == 'ir_se': |
|
for block in blocks: |
|
for bottleneck in block: |
|
modules.append(bottleneck_IR_SE(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) |
|
|
|
self.body = Sequential(*modules) |
|
|
|
def forward(self, x): |
|
x = self.input_layer(x) |
|
x = self.body(x) |
|
x = self.output_layer(x) |
|
return l2_norm(x) |
|
|