dattarij's picture
adding ContraCLIP folder
8c212a5
raw
history blame
6.58 kB
from torch import nn
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout, MaxPool2d, \
AdaptiveAvgPool2d, Sequential, Module
import torch
from collections import namedtuple
class IDComparator(nn.Module):
def __init__(self):
super(IDComparator, self).__init__()
self.backbone = SE_IR(50, drop_ratio=0.4, mode='ir_se')
self.backbone.load_state_dict(torch.load('models/pretrained/arcface/model_ir_se50.pth'))
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.criterion = nn.CosineSimilarity(dim=1, eps=1e-6)
def extract_feats(self, x):
# Crop interesting region
x = x[:, :, 35:223, 32:220]
return self.backbone(self.face_pool(x))
def forward(self, x, x_prime):
return self.criterion(self.extract_feats(x), self.extract_feats(x_prime)).mean()
########################################################################################################################
## ##
## [ Original Arcface Model ] ##
## ##
########################################################################################################################
class Flatten(Module):
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
def l2_norm(x, axis=1):
norm = torch.norm(x, 2, axis, True)
output = torch.div(x, norm)
return output
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(
channels, channels // reduction, kernel_size=(1, 1), padding=0, bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(
channels // reduction, channels, kernel_size=(1, 1), padding=0, bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class bottleneck_IR_SE(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth),
SEModule(depth, 16)
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
"""A named tuple describing a ResNet block."""
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for _ in range(num_units - 1)]
def get_blocks(num_layers):
if num_layers == 50:
return [get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)]
elif num_layers == 100:
return [get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)]
elif num_layers == 152:
return [get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)]
class SE_IR(Module):
def __init__(self, num_layers, drop_ratio=0.4, mode='ir_se'):
super(SE_IR, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), (1, 1), 1, bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_layer = Sequential(BatchNorm2d(512),
Dropout(drop_ratio),
Flatten(),
Linear(512 * 7 * 7, 512),
BatchNorm1d(512))
modules = []
blocks = get_blocks(num_layers)
if mode == 'ir':
for block in blocks:
for bottleneck in block:
modules.append(bottleneck_IR(bottleneck.in_channel, bottleneck.depth, bottleneck.stride))
elif mode == 'ir_se':
for block in blocks:
for bottleneck in block:
modules.append(bottleneck_IR_SE(bottleneck.in_channel, bottleneck.depth, bottleneck.stride))
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return l2_norm(x)