File size: 6,582 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from torch import nn
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout, MaxPool2d, \
    AdaptiveAvgPool2d, Sequential, Module
import torch
from collections import namedtuple


class IDComparator(nn.Module):
    def __init__(self):
        super(IDComparator, self).__init__()
        self.backbone = SE_IR(50, drop_ratio=0.4, mode='ir_se')
        self.backbone.load_state_dict(torch.load('models/pretrained/arcface/model_ir_se50.pth'))
        self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
        self.criterion = nn.CosineSimilarity(dim=1, eps=1e-6)

    def extract_feats(self, x):
        # Crop interesting region
        x = x[:, :, 35:223, 32:220]
        return self.backbone(self.face_pool(x))

    def forward(self, x, x_prime):
        return self.criterion(self.extract_feats(x), self.extract_feats(x_prime)).mean()


########################################################################################################################
##                                                                                                                    ##
##                                             [ Original Arcface Model ]                                             ##
##                                                                                                                    ##
########################################################################################################################
class Flatten(Module):
    @staticmethod
    def forward(x):
        return x.view(x.size(0), -1)


def l2_norm(x, axis=1):
    norm = torch.norm(x, 2, axis, True)
    output = torch.div(x, norm)
    return output


class SEModule(Module):
    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2d(1)
        self.fc1 = Conv2d(
            channels, channels // reduction, kernel_size=(1, 1), padding=0, bias=False)
        self.relu = ReLU(inplace=True)
        self.fc2 = Conv2d(
            channels // reduction, channels, kernel_size=(1, 1), padding=0, bias=False)
        self.sigmoid = Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x


class bottleneck_IR(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth))

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


class bottleneck_IR_SE(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR_SE, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            BatchNorm2d(depth),
            SEModule(depth, 16)
        )

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
    """A named tuple describing a ResNet block."""


def get_block(in_channel, depth, num_units, stride=2):
    return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for _ in range(num_units - 1)]


def get_blocks(num_layers):
    if num_layers == 50:
        return [get_block(in_channel=64, depth=64, num_units=3),
                get_block(in_channel=64, depth=128, num_units=4),
                get_block(in_channel=128, depth=256, num_units=14),
                get_block(in_channel=256, depth=512, num_units=3)]

    elif num_layers == 100:
        return [get_block(in_channel=64, depth=64, num_units=3),
                get_block(in_channel=64, depth=128, num_units=13),
                get_block(in_channel=128, depth=256, num_units=30),
                get_block(in_channel=256, depth=512, num_units=3)]
    elif num_layers == 152:
        return [get_block(in_channel=64, depth=64, num_units=3),
                get_block(in_channel=64, depth=128, num_units=8),
                get_block(in_channel=128, depth=256, num_units=36),
                get_block(in_channel=256, depth=512, num_units=3)]


class SE_IR(Module):
    def __init__(self, num_layers, drop_ratio=0.4, mode='ir_se'):
        super(SE_IR, self).__init__()
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'

        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), (1, 1), 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        self.output_layer = Sequential(BatchNorm2d(512),
                                       Dropout(drop_ratio),
                                       Flatten(),
                                       Linear(512 * 7 * 7, 512),
                                       BatchNorm1d(512))
        modules = []
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            for block in blocks:
                for bottleneck in block:
                    modules.append(bottleneck_IR(bottleneck.in_channel, bottleneck.depth, bottleneck.stride))
        elif mode == 'ir_se':
            for block in blocks:
                for bottleneck in block:
                    modules.append(bottleneck_IR_SE(bottleneck.in_channel, bottleneck.depth, bottleneck.stride))

        self.body = Sequential(*modules)

    def forward(self, x):
        x = self.input_layer(x)
        x = self.body(x)
        x = self.output_layer(x)
        return l2_norm(x)