File size: 11,886 Bytes
607348e
5c35238
 
19ac608
e8eafba
 
19ac608
e8eafba
 
 
 
 
 
 
 
 
5c35238
e8eafba
 
 
 
5c35238
e8eafba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcacda
e8eafba
5c35238
e8eafba
 
 
 
 
 
 
 
 
 
5c35238
e8eafba
 
 
 
 
 
5c35238
 
 
85cd50e
 
 
5c35238
 
 
 
 
 
 
 
 
 
 
 
85cd50e
5c35238
 
 
 
 
 
 
 
 
 
 
85cd50e
5c35238
85cd50e
 
 
 
 
 
 
 
 
 
5c35238
 
e8eafba
5c35238
 
19ac608
 
607348e
3008991
5c35238
 
 
 
 
607348e
5c35238
 
 
 
 
3008991
fb1f641
e8eafba
5c35238
 
 
fb1f641
5c35238
fb1f641
f464233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4357214
f464233
85cd50e
 
f464233
85cd50e
 
 
 
 
 
 
 
 
19ac608
f464233
19ac608
4357214
f464233
530a947
 
3008991
15dadb3
 
3008991
 
5c35238
 
 
 
 
 
 
3008991
 
 
 
 
5c35238
 
3008991
5c35238
 
3008991
5c35238
4357214
5c35238
ad6ff47
 
4357214
5c35238
ad6ff47
fb1f641
5c35238
4357214
ad6ff47
4357214
 
fb1f641
7c45a5f
 
 
 
 
 
 
fb1f641
5c35238
 
 
 
 
 
 
 
 
 
 
 
fb1f641
5c35238
 
 
fb1f641
e4bd4d5
5c35238
fb1f641
098ca99
fb1f641
5c35238
fb1f641
 
 
7c45a5f
 
 
 
 
 
 
e00f0bb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import gradio as gr
import nltk
import librosa
from transformers import pipeline
from transformers.file_utils import cached_path, hf_bucket_url
import os, zipfile
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer
from datasets import load_dataset
import torch
import kenlm
import torchaudio
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel

"""Vietnamese speech2text"""
cache_dir = './cache/'
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip')
lm_file = cached_path(lm_file,cache_dir=cache_dir)
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
    zip_ref.extractall(cache_dir)
lm_file = cache_dir + 'vi_lm_4grams.bin'

def get_decoder_ngram_model(tokenizer, ngram_lm_path):
    vocab_dict = tokenizer.get_vocab()
    sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
    vocab = [x[1] for x in sort_vocab][:-2]
    vocab_list = vocab
    # convert ctc blank character representation
    vocab_list[tokenizer.pad_token_id] = ""
    # replace special characters
    vocab_list[tokenizer.unk_token_id] = ""
    # vocab_list[tokenizer.bos_token_id] = ""
    # vocab_list[tokenizer.eos_token_id] = ""
    # convert space character representation
    vocab_list[tokenizer.word_delimiter_token_id] = " "
    # specify ctc blank char index, since conventially it is the last entry of the logit matrix
    alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=tokenizer.pad_token_id)
    lm_model = kenlm.Model(ngram_lm_path)
    decoder = BeamSearchDecoderCTC(alphabet,
                                   language_model=LanguageModel(lm_model))
    return decoder
ngram_lm_model = get_decoder_ngram_model(processor.tokenizer, lm_file)

# define function to read in sound file
def speech_file_to_array_fn(path, max_seconds=10):
    batch = {"file": path}
    speech_array, sampling_rate = torchaudio.load(batch["file"])
    if sampling_rate != 16000:
      transform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
                                                 new_freq=16000)
      speech_array = transform(speech_array)
    speech_array = speech_array[0]
    if max_seconds > 0:
      speech_array = speech_array[:max_seconds*16000]
    batch["speech"] = speech_array.numpy()
    batch["sampling_rate"] = 16000
    return batch
    
# tokenize
def speech2text_vi(audio):
   # read in sound file
    # load dummy dataset and read soundfiles
    ds = speech_file_to_array_fn(audio.name)
    # infer model
    input_values = processor(
          ds["speech"], 
          sampling_rate=ds["sampling_rate"], 
          return_tensors="pt"
    ).input_values
    # decode ctc output
    logits = vi_model(input_values).logits[0]
    pred_ids = torch.argmax(logits, dim=-1)
    greedy_search_output = processor.decode(pred_ids)
    beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
    return beam_search_output


"""English speech2text"""
nltk.download("punkt")
# Loading the model and the tokenizer
model_name = "facebook/wav2vec2-base-960h"
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)

def load_data(input_file):
    """ Function for resampling to ensure that the speech input is sampled at 16KHz.
    """
    # read the file
    speech, sample_rate = librosa.load(input_file)
    # make it 1-D
    if len(speech.shape) > 1:
        speech = speech[:, 0] + speech[:, 1]
    # Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
    if sample_rate != 16000:
        speech = librosa.resample(speech, sample_rate, 16000)
    return speech

def correct_casing(input_sentence):
    """ This function is for correcting the casing of the generated transcribed text
    """
    sentences = nltk.sent_tokenize(input_sentence)
    return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))


def speech2text_en(input_file):
    """This function generates transcripts for the provided audio input
    """
    speech = load_data(input_file)
    # Tokenize
    input_values = eng_tokenizer(speech, return_tensors="pt").input_values
    # Take logits
    logits = eng_model(input_values).logits
    # Take argmax
    predicted_ids = torch.argmax(logits, dim=-1)
    # Get the words from predicted word ids
    transcription = eng_tokenizer.decode(predicted_ids[0])
    # Output is all upper case
    transcription = correct_casing(transcription.lower())
    return transcription


"""Machine translation"""
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
vien_translator = pipeline("translation", model=vien_model_checkpoint)
envi_translator = pipeline("translation", model=envi_model_checkpoint)

def translate_vi2en(Vietnamese):
    return vien_translator(Vietnamese)[0]['translation_text']

def translate_en2vi(English):
    return envi_translator(English)[0]['translation_text']




""" Inference"""
def inference_vien(audio):
    vi_text = speech2text_vi(audio)
    en_text = translate_vi2en(vi_text)
    return vi_text, en_text

def inference_envi(audio):
    en_text = speech2text_en(audio)
    vi_text = translate_en2vi(en_text)
    return en_text, vi_text

def transcribe_vi(audio, state_vi="", state_en=""):
    ds = speech_file_to_array_fn(audio.name)
    # infer model
    input_values = processor(
          ds["speech"],
          sampling_rate=ds["sampling_rate"], 
          return_tensors="pt"
    ).input_values
    # decode ctc output
    logits = vi_model(input_values).logits[0]
    pred_ids = torch.argmax(logits, dim=-1)
    greedy_search_output = processor.decode(pred_ids)
    beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
    state_vi += beam_search_output + " "
    en_text = translate_vi2en(beam_search_output)
    state_en += en_text + " "
    return state_vi, state_en

def transcribe_en(audio, state_en="", state_vi=""):
    speech = load_data(audio)
    # Tokenize
    input_values = eng_tokenizer(speech, return_tensors="pt").input_values
    # Take logits
    logits = eng_model(input_values).logits
    # Take argmax
    predicted_ids = torch.argmax(logits, dim=-1)
    # Get the words from predicted word ids
    transcription = eng_tokenizer.decode(predicted_ids[0])
    # Output is all upper case
    transcription = correct_casing(transcription.lower())
    state_en += transcription + " "
    vi_text = translate_en2vi(transcription)
    state_vi += vi_text + " "
    return state_en, state_vi

"""Gradio demo"""

vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
                   "Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
                   "Nếu như một câu nói có thể khiến em vui."]
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]

en_example_text = ["According to a study by Statista, the global AI market is set to grow up to 54 percent every single year.",
                   "As one of the world's greatest cities, Air New Zealand is proud to add the Big Apple to its list of 29 international destinations.",
                   "And yet, earlier this month, I found myself at Halloween Horror Nights at Universal Orlando Resort, one of the most popular Halloween events in the US among hardcore horror buffs."
                   ]
en_example_voice =[['en_speech_01.wav'], ['en_speech_02.wav'], ['en_speech_03.wav']]


with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Translation: Vietnamese to English"):
            with gr.Row():
                with gr.Column():
                    vietnamese_text = gr.Textbox(label="Vietnamese Text")
                    translate_button_vien_1 = gr.Button(value="Translate To English")
                with gr.Column():
                    english_out_1 = gr.Textbox(label="English Text")
            translate_button_vien_1.click(lambda text: translate_vi2en(text), inputs=vietnamese_text, outputs=english_out_1)
            gr.Examples(examples=vi_example_text,
                        inputs=[vietnamese_text])
        
        with gr.TabItem("Speech2text and Vi-En Translation"):
            with gr.Row():
                with gr.Column():
                    vi_audio_1 = gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=False)
                    translate_button_vien_2 = gr.Button(value="Translate To English")
                with gr.Column():
                    speech2text_vi1 = gr.Textbox(label="Vietnamese Text")
                    english_out_2 = gr.Textbox(label="English Text")
            translate_button_vien_2.click(lambda vi_voice: inference_vien(vi_voice), inputs=vi_audio_1, outputs=[speech2text_vi1, english_out_2])
            gr.Examples(examples=vi_example_voice,
                        inputs=[vi_audio_1])
        
        with gr.TabItem("Vi-En Realtime Translation"):
            with gr.Row():
                with gr.Column():
                    vi_audio_2 = gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True)
                with gr.Column():
                    speech2text_vi2 = gr.Textbox(label="Vietnamese Text")
                    english_out_3 = gr.Textbox(label="English Text")
            vi_audio_2.change(transcribe_vi, [vi_audio_2, speech2text_vi2, english_out_3], [speech2text_vi2, english_out_3])


    with gr.Tabs():
        with gr.TabItem("Translation: English to Vietnamese"):
            with gr.Row():
                with gr.Column():
                    english_text = gr.Textbox(label="English Text")
                    translate_button_envi_1 = gr.Button(value="Translate To Vietnamese")
                with gr.Column():
                    vietnamese_out_1 = gr.Textbox(label="Vietnamese Text")
            translate_button_envi_1.click(lambda text: translate_en2vi(text), inputs=english_text, outputs=vietnamese_out_1)
            gr.Examples(examples=en_example_text,
                        inputs=[english_text])
        
        with gr.TabItem("Speech2text and En-Vi Translation"):
            with gr.Row():
                with gr.Column():
                    en_audio_1 = gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=False)
                    translate_button_envi_2 = gr.Button(value="Translate To Vietnamese")
                with gr.Column():
                    speech2text_en1 = gr.Textbox(label="English Text")
                    vietnamese_out_2 = gr.Textbox(label="Vietnamese Text")
            translate_button_envi_2.click(lambda en_voice: inference_envi(en_voice), inputs=en_audio_1, outputs=[speech2text_en1, vietnamese_out_2])
            gr.Examples(examples=en_example_voice,
                        inputs=[en_audio_1])
        
        with gr.TabItem("En-Vi Realtime Translation"):
            with gr.Row():
                with gr.Column():
                    en_audio_2 = gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True)
                with gr.Column():
                    speech2text_en2 = gr.Textbox(label="English Text")
                    vietnamese_out_3 = gr.Textbox(label="Vietnamese Text")
            en_audio_2.change(transcribe_en, [en_audio_2, speech2text_en2, vietnamese_out_3], [speech2text_en2, vietnamese_out_3])

if __name__ == "__main__":
    demo.launch()