Spaces:
Runtime error
Runtime error
datnth1709
commited on
Commit
·
5c35238
1
Parent(s):
f4a01a0
add envi traslation
Browse files- app.py +112 -22
- en_speech_01.wav +0 -0
- en_speech_02.wav +0 -0
- en_speech_03.wav +0 -0
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
from transformers.file_utils import cached_path, hf_bucket_url
|
4 |
import os, zipfile
|
5 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
6 |
from datasets import load_dataset
|
7 |
import torch
|
8 |
import kenlm
|
@@ -12,12 +14,12 @@ from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel
|
|
12 |
"""Vietnamese speech2text"""
|
13 |
cache_dir = './cache/'
|
14 |
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
15 |
-
|
16 |
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip')
|
17 |
lm_file = cached_path(lm_file,cache_dir=cache_dir)
|
18 |
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
19 |
zip_ref.extractall(cache_dir)
|
20 |
-
lm_file = cache_dir + 'vi_lm_4grams.bin'
|
21 |
|
22 |
def get_decoder_ngram_model(tokenizer, ngram_lm_path):
|
23 |
vocab_dict = tokenizer.get_vocab()
|
@@ -56,7 +58,7 @@ def speech_file_to_array_fn(path, max_seconds=10):
|
|
56 |
return batch
|
57 |
|
58 |
# tokenize
|
59 |
-
def
|
60 |
# read in sound file
|
61 |
# load dummy dataset and read soundfiles
|
62 |
ds = speech_file_to_array_fn(audio.name)
|
@@ -67,57 +69,145 @@ def speech2text(audio):
|
|
67 |
return_tensors="pt"
|
68 |
).input_values
|
69 |
# decode ctc output
|
70 |
-
logits =
|
71 |
pred_ids = torch.argmax(logits, dim=-1)
|
72 |
greedy_search_output = processor.decode(pred_ids)
|
73 |
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
74 |
return beam_search_output
|
75 |
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
"""Machine translation"""
|
78 |
-
|
79 |
-
|
|
|
|
|
80 |
|
81 |
def translate_vi2en(Vietnamese):
|
82 |
-
return
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
en_text = translate_vi2en(vi_text)
|
87 |
return en_text
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
"""Gradio demo"""
|
91 |
|
92 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
93 |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
94 |
"Nếu như một câu nói có thể khiến em vui."]
|
95 |
-
|
96 |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
with gr.Blocks() as demo:
|
99 |
with gr.Tabs():
|
100 |
with gr.TabItem("Translation: Vietnamese to English"):
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
103 |
-
|
104 |
-
|
105 |
with gr.Column():
|
106 |
-
|
107 |
-
|
108 |
gr.Examples(examples=vi_example_text,
|
109 |
-
inputs=[
|
110 |
-
with gr.TabItem("Speech2text and
|
111 |
with gr.Row():
|
112 |
with gr.Column():
|
113 |
-
|
114 |
-
|
115 |
with gr.Column():
|
116 |
-
|
117 |
|
118 |
-
|
119 |
gr.Examples(examples=vi_example_voice,
|
120 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import nltk
|
3 |
+
import librosa
|
4 |
from transformers import pipeline
|
5 |
from transformers.file_utils import cached_path, hf_bucket_url
|
6 |
import os, zipfile
|
7 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
8 |
from datasets import load_dataset
|
9 |
import torch
|
10 |
import kenlm
|
|
|
14 |
"""Vietnamese speech2text"""
|
15 |
cache_dir = './cache/'
|
16 |
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
17 |
+
vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
18 |
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip')
|
19 |
lm_file = cached_path(lm_file,cache_dir=cache_dir)
|
20 |
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
21 |
zip_ref.extractall(cache_dir)
|
22 |
+
lm_file = cache_dir + 'vi_lm_4grams.bin'
|
23 |
|
24 |
def get_decoder_ngram_model(tokenizer, ngram_lm_path):
|
25 |
vocab_dict = tokenizer.get_vocab()
|
|
|
58 |
return batch
|
59 |
|
60 |
# tokenize
|
61 |
+
def speech2text_vi(audio):
|
62 |
# read in sound file
|
63 |
# load dummy dataset and read soundfiles
|
64 |
ds = speech_file_to_array_fn(audio.name)
|
|
|
69 |
return_tensors="pt"
|
70 |
).input_values
|
71 |
# decode ctc output
|
72 |
+
logits = vi_model(input_values).logits[0]
|
73 |
pred_ids = torch.argmax(logits, dim=-1)
|
74 |
greedy_search_output = processor.decode(pred_ids)
|
75 |
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
76 |
return beam_search_output
|
77 |
|
78 |
|
79 |
+
"""English speech2text"""
|
80 |
+
nltk.download("punkt")
|
81 |
+
# Loading the model and the tokenizer
|
82 |
+
model_name = "facebook/wav2vec2-base-960h"
|
83 |
+
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
84 |
+
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
85 |
+
|
86 |
+
def load_data(input_file):
|
87 |
+
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
88 |
+
"""
|
89 |
+
# read the file
|
90 |
+
speech, sample_rate = librosa.load(input_file)
|
91 |
+
# make it 1-D
|
92 |
+
if len(speech.shape) > 1:
|
93 |
+
speech = speech[:, 0] + speech[:, 1]
|
94 |
+
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
95 |
+
if sample_rate != 16000:
|
96 |
+
speech = librosa.resample(speech, sample_rate, 16000)
|
97 |
+
return speech
|
98 |
+
|
99 |
+
def correct_casing(input_sentence):
|
100 |
+
""" This function is for correcting the casing of the generated transcribed text
|
101 |
+
"""
|
102 |
+
sentences = nltk.sent_tokenize(input_sentence)
|
103 |
+
return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))
|
104 |
+
|
105 |
+
|
106 |
+
def speech2text_en(input_file):
|
107 |
+
"""This function generates transcripts for the provided audio input
|
108 |
+
"""
|
109 |
+
speech = load_data(input_file)
|
110 |
+
# Tokenize
|
111 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
112 |
+
# Take logits
|
113 |
+
logits = eng_model(input_values).logits
|
114 |
+
# Take argmax
|
115 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
116 |
+
# Get the words from predicted word ids
|
117 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
118 |
+
# Output is all upper case
|
119 |
+
transcription = correct_casing(transcription.lower())
|
120 |
+
return transcription
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
"""Machine translation"""
|
125 |
+
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
126 |
+
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
|
127 |
+
vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
128 |
+
envi_translator = pipeline("translation", model=envi_model_checkpoint)
|
129 |
|
130 |
def translate_vi2en(Vietnamese):
|
131 |
+
return vien_translator(Vietnamese)[0]['translation_text']
|
132 |
+
|
133 |
+
def translate_en2vi(English):
|
134 |
+
return envi_translator(English)[0]['translation_text']
|
135 |
+
|
136 |
|
137 |
+
|
138 |
+
|
139 |
+
""" Inference"""
|
140 |
+
def inference_vien(audio):
|
141 |
+
vi_text = speech2text_vi(audio)
|
142 |
en_text = translate_vi2en(vi_text)
|
143 |
return en_text
|
144 |
|
145 |
+
def inference_envi(audio):
|
146 |
+
en_text = speech2text_en(audio)
|
147 |
+
vi_text = translate_en2vi(en_text)
|
148 |
+
return vi_text
|
149 |
+
|
150 |
|
151 |
"""Gradio demo"""
|
152 |
|
153 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
154 |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
155 |
"Nếu như một câu nói có thể khiến em vui."]
|
|
|
156 |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
157 |
|
158 |
+
en_example_text = ["According to a study by Statista, the global AI market is set to grow up to 54 percent every single year.",
|
159 |
+
"As one of the world's greatest cities, Air New Zealand is proud to add the Big Apple to its list of 29 international destinations.",
|
160 |
+
"And yet, earlier this month, I found myself at Halloween Horror Nights at Universal Orlando Resort, one of the most popular Halloween events in the US among hardcore horror buffs."
|
161 |
+
]
|
162 |
+
en_example_voice =[['en_speech_01.wav'], ['en_speech_02.wav'], ['en_speech_03.wav']]
|
163 |
+
|
164 |
+
|
165 |
with gr.Blocks() as demo:
|
166 |
with gr.Tabs():
|
167 |
with gr.TabItem("Translation: Vietnamese to English"):
|
168 |
with gr.Row():
|
169 |
with gr.Column():
|
170 |
+
vietnamese_text = gr.Textbox(label="Vietnamese Text")
|
171 |
+
translate_button_vien_1 = gr.Button(value="Translate To English")
|
172 |
with gr.Column():
|
173 |
+
english_out_1 = gr.Textbox(label="English Text")
|
174 |
+
translate_button_vien_1.click(lambda text: translate_vi2en(text), inputs=vietnamese_text, outputs=english_out_1)
|
175 |
gr.Examples(examples=vi_example_text,
|
176 |
+
inputs=[vietnamese_text])
|
177 |
+
with gr.TabItem("Speech2text and Vi-En Translation"):
|
178 |
with gr.Row():
|
179 |
with gr.Column():
|
180 |
+
vi_audio = gr.Audio(source="microphone", label="Input Audio", type="file", streaming=False)
|
181 |
+
translate_button_vien_2 = gr.Button(value="Translate To English")
|
182 |
with gr.Column():
|
183 |
+
english_out_2 = gr.Textbox(label="English Text")
|
184 |
|
185 |
+
translate_button_vien_2.click(lambda voice: inference_vien(voice), inputs=vi_audio, outputs=english_out_2)
|
186 |
gr.Examples(examples=vi_example_voice,
|
187 |
+
inputs=[vi_audio])
|
188 |
+
|
189 |
+
with gr.Tabs():
|
190 |
+
with gr.TabItem("Translation: English to Vietnamese"):
|
191 |
+
with gr.Row():
|
192 |
+
with gr.Column():
|
193 |
+
english_text = gr.Textbox(label="English Text")
|
194 |
+
translate_button_envi_1 = gr.Button(value="Translate To Vietnamese")
|
195 |
+
with gr.Column():
|
196 |
+
vietnamese_out_1 = gr.Textbox(label="Vietnamese Text")
|
197 |
+
translate_button_envi_1.click(lambda text: translate_en2vi(text), inputs=english_text, outputs=vietnamese_out_1)
|
198 |
+
gr.Examples(examples=en_example_text,
|
199 |
+
inputs=[english_text])
|
200 |
+
with gr.TabItem("Speech2text and En-Vi Translation"):
|
201 |
+
with gr.Row():
|
202 |
+
with gr.Column():
|
203 |
+
en_audio = gr.Audio(source="microphone", label="Input Audio", type="file", streaming=False)
|
204 |
+
translate_button_envi_2 = gr.Button(value="Translate To English")
|
205 |
+
with gr.Column():
|
206 |
+
vietnamese_out_2 = gr.Textbox(label="English Text")
|
207 |
+
|
208 |
+
translate_button_envi_2.click(lambda voice: inference_envi(voice), inputs=en_audio, outputs=vietnamese_out_2)
|
209 |
+
gr.Examples(examples=en_example_voice,
|
210 |
+
inputs=[en_audio])
|
211 |
|
212 |
if __name__ == "__main__":
|
213 |
demo.launch()
|
en_speech_01.wav
ADDED
Binary file (816 kB). View file
|
|
en_speech_02.wav
ADDED
Binary file (238 kB). View file
|
|
en_speech_03.wav
ADDED
Binary file (751 kB). View file
|
|
requirements.txt
CHANGED
@@ -10,6 +10,8 @@ pyctcdecode
|
|
10 |
soundfile
|
11 |
ffmpeg-python
|
12 |
gradio
|
|
|
|
|
13 |
transformers
|
14 |
transformers[sentencepiece]
|
15 |
https://github.com/kpu/kenlm/archive/master.zip
|
|
|
10 |
soundfile
|
11 |
ffmpeg-python
|
12 |
gradio
|
13 |
+
nltk
|
14 |
+
librosa
|
15 |
transformers
|
16 |
transformers[sentencepiece]
|
17 |
https://github.com/kpu/kenlm/archive/master.zip
|