Spaces:
Sleeping
Sleeping
File size: 20,750 Bytes
4d82458 1628a30 657db0b 9e7becb a9c2212 9e7becb 5a8d02c 657db0b b5bf2c0 e65c78c bf92466 4996a19 64136bc 24bed82 a9c2212 a893b55 bf92466 dc70c7b b5bf2c0 dc70c7b a9c2212 1f396c3 95d1f22 dc70c7b 2b40426 95d1f22 dc70c7b 95d1f22 657db0b 64583bd 2b40426 f2ee5d3 2b40426 bf92466 2b40426 b5ecaeb 2b40426 657db0b bf92466 657db0b 75e3496 2b40426 75e3496 b5bf2c0 7dcda45 b5bf2c0 7dcda45 b5bf2c0 7dcda45 e739a24 b5bf2c0 fe421d1 2b40426 9c726b4 fe421d1 b5bf2c0 e739a24 fd054e7 e739a24 fd054e7 2269797 e739a24 4d82458 29466a4 657db0b 29466a4 657db0b a5c2f0e 29466a4 a5c2f0e b5bf2c0 7dcda45 119b257 7dcda45 657db0b a5c2f0e 64136bc e2d9a99 560300f c3813c7 9c726b4 a5eff40 9c726b4 a5eff40 9c726b4 29466a4 abbebb7 dfa9cba 7dcda45 a5eff40 119b257 abbebb7 29466a4 2b40426 29466a4 2b40426 c79877a 2b40426 c3813c7 2b40426 e2d9a99 2b40426 a5eff40 2b40426 9e7becb dc70c7b 9e7becb 25cc563 1f396c3 119b257 b5ec742 1f396c3 25cc563 1f396c3 9e7becb 2b40426 9e7becb 25cc563 9e7becb fc9ec9d 2b40426 bf92466 abbebb7 dfa9cba abbebb7 2b40426 119b257 abbebb7 e2d9a99 2b40426 64583bd 2b40426 b5ecaeb 2b40426 b5ecaeb 2b40426 b5ecaeb 2b40426 aea74ea 2b40426 657db0b 8712d35 dfa9cba fe421d1 9e7becb 119b257 9e7becb 9b9b3ce 657db0b 9c726b4 2b40426 80ad604 657db0b 2b40426 8712d35 657db0b 9e7becb dfa9cba 9e7becb 2b40426 64583bd 657db0b dc70c7b 657db0b dc70c7b 657db0b dc70c7b 657db0b dc70c7b 657db0b 29466a4 657db0b 29466a4 657db0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
# import spaces
import gradio as gr
import logging
import os
import datamapplot
import numpy as np
from dotenv import load_dotenv
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bertopic import BERTopic
from bertopic.representation import KeyBERTInspired
from huggingface_hub import HfApi, InferenceClient
from sklearn.feature_extraction.text import CountVectorizer
from sentence_transformers import SentenceTransformer
from torch import cuda
from src.hub import create_space_with_content
from src.templates import LLAMA_3_8B_PROMPT, SPACE_REPO_CARD_CONTENT
from src.viewer_api import (
get_split_rows,
get_parquet_urls,
get_docs_from_parquet,
get_info,
)
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
MAX_ROWS = int(os.getenv("MAX_ROWS", "8_000"))
CHUNK_SIZE = int(os.getenv("CHUNK_SIZE", "2_000"))
DATASETS_TOPICS_ORGANIZATION = os.getenv(
"DATASETS_TOPICS_ORGANIZATION", "datasets-topics"
)
USE_CUML = int(os.getenv("USE_CUML", "1"))
USE_LLM_TEXT_GENERATION = int(os.getenv("USE_LLM_TEXT_GENERATION", "1"))
# Use cuml lib only if configured
if USE_CUML:
from cuml.manifold import UMAP
from cuml.cluster import HDBSCAN
else:
from umap import UMAP
from hdbscan import HDBSCAN
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
api = HfApi(token=HF_TOKEN)
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
# Representation model
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
representation_model = KeyBERTInspired()
vectorizer_model = CountVectorizer(stop_words="english")
inference_client = InferenceClient(model_id)
def calculate_embeddings(docs):
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
def calculate_n_neighbors_and_components(n_rows):
n_neighbors = min(max(n_rows // 20, 15), 100)
n_components = 10 if n_rows > 1000 else 5 # Higher components for larger datasets
return n_neighbors, n_components
def fit_model(docs, embeddings, n_neighbors, n_components):
umap_model = UMAP(
n_neighbors=n_neighbors,
n_components=n_components,
min_dist=0.0,
metric="cosine",
random_state=42,
)
hdbscan_model = HDBSCAN(
min_cluster_size=max(
5, n_neighbors // 2
), # Reducing min_cluster_size for fewer outliers
metric="euclidean",
cluster_selection_method="eom",
prediction_data=True,
)
new_model = BERTopic(
language="english",
# Sub-models
embedding_model=sentence_model, # Step 1 - Extract embeddings
umap_model=umap_model, # Step 2 - UMAP model
hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings
vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics
representation_model=representation_model, # Step 5 - Label topics
# Hyperparameters
top_n_words=10,
verbose=True,
min_topic_size=n_neighbors, # Coherent with n_neighbors?
)
logging.info("Fitting new model")
new_model.fit(docs, embeddings)
logging.info("End fitting new model")
return new_model
# @spaces.GPU(duration=60 * 5)
def generate_topics(dataset, config, split, column, plot_type):
logging.info(
f"Generating topics for {dataset=} {config=} {split=} {column=} {plot_type=}"
)
parquet_urls = get_parquet_urls(dataset, config, split)
split_rows = get_split_rows(dataset, config, split)
if split_rows is None or split_rows == 0:
return (
gr.Accordion(open=True),
gr.DataFrame(value=[], interactive=False, visible=True),
gr.Plot(value=None, visible=True),
gr.Label(
{"β Error: No data found for the selected dataset": 0.0}, visible=True
),
"",
)
logging.info(f"Split number of rows: {split_rows}")
limit = min(split_rows, MAX_ROWS)
n_neighbors, n_components = calculate_n_neighbors_and_components(limit)
reduce_umap_model = UMAP(
n_neighbors=n_neighbors,
n_components=2, # For visualization, keeping it for 2D
min_dist=0.0,
metric="cosine",
random_state=42,
)
offset = 0
rows_processed = 0
base_model = None
all_docs = []
reduced_embeddings_list = []
topics_info, topic_plot = None, None
full_processing = split_rows <= MAX_ROWS
message = (
f"Processing topics for full dataset: 0 of ({split_rows} rows)"
if full_processing
else f"Processing topics for partial dataset 0 of ({limit} rows)"
)
sub_title = (
f"Data map for the entire dataset ({limit} rows) using the column '{column}'"
if full_processing
else f"Data map for a sample of the dataset (first {limit} rows) using the column '{column}'"
)
yield (
gr.Accordion(open=False),
gr.DataFrame(value=[], interactive=False, visible=True),
gr.Plot(value=None, visible=True),
gr.Label({"β³ " + message: 0.0}, visible=True),
"",
)
while offset < limit:
logging.info(f"----> Getting records from {offset=} with {CHUNK_SIZE=}")
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
if not docs:
break
logging.info(f"Got {len(docs)} docs β")
embeddings = calculate_embeddings(docs)
new_model = fit_model(docs, embeddings, n_neighbors, n_components)
if base_model is None:
base_model = new_model
logging.info(
f"The following topics are newly found: {base_model.topic_labels_}"
)
else:
updated_model = BERTopic.merge_models([base_model, new_model])
nr_new_topics = len(set(updated_model.topics_)) - len(
set(base_model.topics_)
)
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
logging.info(f"The following topics are newly found: {new_topics}")
base_model = updated_model
logging.info("Reducing embeddings to 2D")
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
reduced_embeddings_list.append(reduced_embeddings)
logging.info("Reducing embeddings to 2D β")
all_docs.extend(docs)
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
topics_info = base_model.get_topic_info()
all_topics = base_model.topics_
logging.info(f"Preparing topics {plot_type} plot")
topic_plot = (
base_model.visualize_document_datamap(
docs=all_docs,
topics=all_topics,
reduced_embeddings=reduced_embeddings_array,
title="",
sub_title=sub_title,
width=800,
height=700,
arrowprops={
"arrowstyle": "wedge,tail_width=0.5",
"connectionstyle": "arc3,rad=0.05",
"linewidth": 0,
"fc": "#33333377",
},
dynamic_label_size=True,
# label_wrap_width=12,
label_over_points=True,
max_font_size=36,
min_font_size=4,
)
if plot_type == "DataMapPlot"
else base_model.visualize_documents(
docs=all_docs,
topics=all_topics,
reduced_embeddings=reduced_embeddings_array,
title="",
)
)
logging.info("Plot done β")
rows_processed += len(docs)
progress = min(rows_processed / limit, 1.0)
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
message = (
f"Processing topics for full dataset: {rows_processed} of {limit}"
if full_processing
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
)
yield (
gr.Accordion(open=False),
topics_info,
topic_plot,
gr.Label({"β³ " + message: progress}, visible=True),
"",
)
offset += CHUNK_SIZE
del docs, embeddings, new_model, reduced_embeddings
logging.info("Finished processing all data")
yield (
gr.Accordion(open=False),
topics_info,
topic_plot,
gr.Label(
{
"β
" + message: 1.0,
f"β³ Generating topic names with {model_id}": 0.0,
},
visible=True,
),
"",
)
all_topics = base_model.topics_
topics_info = base_model.get_topic_info()
new_topics_by_text_generation = {}
for _, row in topics_info.iterrows():
logging.info(
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
)
prompt = f"{LLAMA_3_8B_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
prompt_messages = [
{
"role": "system",
"content": "You are a helpful, respectful and honest assistant for labeling topics.",
},
{"role": "user", "content": prompt},
]
output = inference_client.chat_completion(
messages=prompt_messages,
stream=False,
max_tokens=500,
top_p=0.8,
seed=42,
)
inference_response = output.choices[0].message.content
logging.info("Inference response:")
logging.info(inference_response)
new_topics_by_text_generation[row["Topic"]] = inference_response.replace(
"Topic=", ""
).strip()
base_model.set_topic_labels(new_topics_by_text_generation)
topics_info = base_model.get_topic_info()
topic_plot = (
base_model.visualize_document_datamap(
docs=all_docs,
topics=all_topics,
custom_labels=True,
reduced_embeddings=reduced_embeddings_array,
title="",
sub_title=sub_title,
width=800,
height=700,
arrowprops={
"arrowstyle": "wedge,tail_width=0.5",
"connectionstyle": "arc3,rad=0.05",
"linewidth": 0,
"fc": "#33333377",
},
dynamic_label_size=True,
# label_wrap_width=12,
label_over_points=True,
max_font_size=36,
min_font_size=4,
)
if plot_type == "DataMapPlot"
else base_model.visualize_documents(
docs=all_docs,
reduced_embeddings=reduced_embeddings_array,
custom_labels=True,
title="",
)
)
dataset_clear_name = dataset.replace("/", "-")
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
if plot_type == "DataMapPlot":
topic_plot.savefig(plot_png, format="png", dpi=300)
else:
topic_plot.write_image(plot_png)
custom_labels = base_model.custom_labels_
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
yield (
gr.Accordion(open=False),
topics_info,
topic_plot,
gr.Label(
{
"β
" + message: 1.0,
f"β
Generating topic names with {model_id}": 1.0,
"β³ Creating Interactive Space": 0.0,
},
visible=True,
),
"",
)
interactive_plot = datamapplot.create_interactive_plot(
reduced_embeddings_array,
topic_names_array,
hover_text=all_docs,
title=dataset,
sub_title=sub_title.replace(
"dataset",
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
),
enable_search=True,
# TODO: Export data to .arrow and also serve it
inline_data=True,
# offline_data_prefix=dataset_clear_name,
initial_zoom_fraction=0.9,
cluster_boundary_polygons=True
)
html_content = str(interactive_plot)
html_file_path = f"{dataset_clear_name}.html"
with open(html_file_path, "w", encoding="utf-8") as html_file:
html_file.write(html_content)
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
space_id = create_space_with_content(
api=api,
repo_id=repo_id,
dataset_id=dataset,
html_file_path=html_file_path,
plot_file_path=plot_png,
space_card=SPACE_REPO_CARD_CONTENT,
token=HF_TOKEN,
)
space_link = f"https://huggingface.co/spaces/{space_id}"
yield (
gr.Accordion(open=False),
topics_info,
topic_plot,
gr.Label(
{
"β
" + message: 1.0,
f"β
Generating topic names with {model_id}": 1.0,
"β
Creating Interactive Space": 1.0,
},
visible=True,
),
f"[![Go to interactive plot](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue)]({space_link})",
)
del reduce_umap_model, all_docs, reduced_embeddings_list
del (
base_model,
all_topics,
topics_info,
topic_plot,
topic_names_array,
interactive_plot,
)
cuda.empty_cache()
with gr.Blocks() as demo:
gr.HTML("<h1 style='text-align: center;'>π Dataset Topic Discovery π</h1>")
gr.HTML(
"<h3 style='text-align: center;'>Select a dataset and text column for topic modeling</h3>"
)
gr.HTML(
"<p style='text-align: center; color:orange;'>β This space is in progress, and we're actively working on it, so you might find some bugs! Please report any issues you have in the Community tab to help us make it better for all.</p>"
)
data_details_accordion = gr.Accordion("Data details", open=True)
with data_details_accordion:
with gr.Row():
with gr.Column(scale=3):
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
split_dropdown = gr.Dropdown(label="Split", visible=False)
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
def embed(name, subset, split):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return gr.HTML(value=html_code)
with gr.Row():
text_column_dropdown = gr.Dropdown(label="Text column name")
plot_type_radio = gr.Radio(
["DataMapPlot", "Plotly"],
value="DataMapPlot",
label="Choose the plot type",
interactive=True,
)
generate_button = gr.Button("Generate Topics", variant="primary")
gr.Markdown("## Data map")
full_topics_generation_label = gr.Label(visible=False, show_label=False)
open_space_label = gr.Markdown()
topics_plot = gr.Plot()
with gr.Accordion("Topics Info", open=False):
topics_df = gr.DataFrame(interactive=False, visible=True)
gr.HTML(
f"<p style='text-align: center; color:orange;'>β This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
)
gr.Markdown(
"_Powered by [bertopic](https://maartengr.github.io/BERTopic/index.html) [datamapplot](https://datamapplot.readthedocs.io/en/latest/) and [duckdb](https://duckdb.org/)_"
)
generate_button.click(
generate_topics,
inputs=[
dataset_name,
subset_dropdown,
split_dropdown,
text_column_dropdown,
plot_type_radio,
],
outputs=[
data_details_accordion,
topics_df,
topics_plot,
full_topics_generation_label,
open_space_label,
],
)
def _resolve_dataset_selection(
dataset: str, default_subset: str, default_split: str, text_feature
):
if "/" not in dataset.strip().strip("/"):
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
}
try:
info_resp = get_info(dataset)
except Exception:
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
}
subsets: list[str] = list(info_resp)
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = list(info_resp[subset]["splits"])
split = default_split if default_split in splits else splits[0]
features = info_resp[subset]["features"]
def _is_string_feature(feature):
return isinstance(feature, dict) and feature.get("dtype") == "string"
text_features = [
feature_name
for feature_name, feature in features.items()
if _is_string_feature(feature)
]
if not text_feature:
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features,
label="Text column name",
),
}
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features, label="Text column name"
),
}
@dataset_name.change(
inputs=[dataset_name],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset="default", default_split="train", text_feature=None
)
@subset_dropdown.change(
inputs=[dataset_name, subset_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split="train", text_feature=None
)
@split_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
],
)
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split=split, text_feature=None
)
@text_column_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
],
)
def show_input_from_text_column_dropdown(
dataset: str, subset: str, split: str, text_column
) -> dict:
return _resolve_dataset_selection(
dataset,
default_subset=subset,
default_split=split,
text_feature=text_column,
)
demo.launch()
|