Spaces:
Running
on
T4
Running
on
T4
Trying to reduce GPU load?
Browse files
app.py
CHANGED
@@ -54,14 +54,18 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
54 |
trust_remote_code=True,
|
55 |
quantization_config=bnb_config,
|
56 |
device_map="auto",
|
|
|
57 |
)
|
58 |
|
|
|
|
|
|
|
59 |
generator = pipeline(
|
60 |
model=model,
|
61 |
tokenizer=tokenizer,
|
62 |
task="text-generation",
|
63 |
temperature=0.1,
|
64 |
-
max_new_tokens=
|
65 |
repetition_penalty=1.1,
|
66 |
)
|
67 |
|
@@ -71,19 +75,31 @@ representation_model = {
|
|
71 |
"Llama2": llama2,
|
72 |
}
|
73 |
|
|
|
|
|
|
|
|
|
74 |
umap_model = UMAP(
|
75 |
-
n_neighbors=
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
|
78 |
hdbscan_model = HDBSCAN(
|
79 |
-
min_cluster_size=
|
80 |
metric="euclidean",
|
81 |
cluster_selection_method="eom",
|
82 |
prediction_data=True,
|
83 |
)
|
84 |
|
85 |
reduce_umap_model = UMAP(
|
86 |
-
n_neighbors=
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
|
89 |
|
@@ -107,8 +123,9 @@ def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
|
107 |
|
108 |
|
109 |
# @spaces.GPU
|
|
|
110 |
def calculate_embeddings(docs):
|
111 |
-
return sentence_model.encode(docs, show_progress_bar=True, batch_size=
|
112 |
|
113 |
|
114 |
# @spaces.GPU
|
@@ -124,7 +141,7 @@ def fit_model(base_model, docs, embeddings):
|
|
124 |
# Hyperparameters
|
125 |
top_n_words=10,
|
126 |
verbose=True,
|
127 |
-
min_topic_size=15,
|
128 |
)
|
129 |
logging.debug("Fitting new model")
|
130 |
new_model.fit(docs, embeddings)
|
@@ -185,13 +202,14 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
185 |
# )
|
186 |
topic_plot = base_model.visualize_barchart()
|
187 |
|
188 |
-
logging.info(f"Topics: {
|
189 |
|
190 |
yield topics_info, topic_plot
|
191 |
|
192 |
offset += chunk_size
|
193 |
|
194 |
logging.info("Finished processing all data")
|
|
|
195 |
return topics_info, topic_plot
|
196 |
|
197 |
|
@@ -229,7 +247,7 @@ with gr.Blocks() as demo:
|
|
229 |
label="Nested text column name", visible=False
|
230 |
)
|
231 |
|
232 |
-
generate_button = gr.Button("Generate
|
233 |
|
234 |
gr.Markdown("## Datamap")
|
235 |
topics_plot = gr.Plot()
|
|
|
54 |
trust_remote_code=True,
|
55 |
quantization_config=bnb_config,
|
56 |
device_map="auto",
|
57 |
+
offload_folder="offload", # Offloading part of the model to CPU to save GPU memory
|
58 |
)
|
59 |
|
60 |
+
# Enable gradient checkpointing for memory efficiency during backprop
|
61 |
+
model.gradient_checkpointing_enable()
|
62 |
+
|
63 |
generator = pipeline(
|
64 |
model=model,
|
65 |
tokenizer=tokenizer,
|
66 |
task="text-generation",
|
67 |
temperature=0.1,
|
68 |
+
max_new_tokens=200, # Reduced max_new_tokens to limit memory consumption
|
69 |
repetition_penalty=1.1,
|
70 |
)
|
71 |
|
|
|
75 |
"Llama2": llama2,
|
76 |
}
|
77 |
|
78 |
+
# TODO: It should be proporcional to the number of rows
|
79 |
+
# For small datasets (1-200 rows) it worked fine with 2 neighbors
|
80 |
+
N_NEIGHBORS = 15
|
81 |
+
|
82 |
umap_model = UMAP(
|
83 |
+
n_neighbors=N_NEIGHBORS,
|
84 |
+
n_components=5,
|
85 |
+
min_dist=0.0,
|
86 |
+
metric="cosine",
|
87 |
+
random_state=42,
|
88 |
)
|
89 |
|
90 |
hdbscan_model = HDBSCAN(
|
91 |
+
min_cluster_size=N_NEIGHBORS,
|
92 |
metric="euclidean",
|
93 |
cluster_selection_method="eom",
|
94 |
prediction_data=True,
|
95 |
)
|
96 |
|
97 |
reduce_umap_model = UMAP(
|
98 |
+
n_neighbors=N_NEIGHBORS,
|
99 |
+
n_components=2,
|
100 |
+
min_dist=0.0,
|
101 |
+
metric="cosine",
|
102 |
+
random_state=42,
|
103 |
)
|
104 |
|
105 |
|
|
|
123 |
|
124 |
|
125 |
# @spaces.GPU
|
126 |
+
# TODO: Modify batch size to reduce memory consumption during embedding calculation, which value is better?
|
127 |
def calculate_embeddings(docs):
|
128 |
+
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
|
129 |
|
130 |
|
131 |
# @spaces.GPU
|
|
|
141 |
# Hyperparameters
|
142 |
top_n_words=10,
|
143 |
verbose=True,
|
144 |
+
min_topic_size=15, # TODO: Should this value be coherent with N_NEIGHBORS?
|
145 |
)
|
146 |
logging.debug("Fitting new model")
|
147 |
new_model.fit(docs, embeddings)
|
|
|
202 |
# )
|
203 |
topic_plot = base_model.visualize_barchart()
|
204 |
|
205 |
+
logging.info(f"Topics: {repr_model_topics}")
|
206 |
|
207 |
yield topics_info, topic_plot
|
208 |
|
209 |
offset += chunk_size
|
210 |
|
211 |
logging.info("Finished processing all data")
|
212 |
+
cuda.empty_cache() # Clear cache at the end of each chunk
|
213 |
return topics_info, topic_plot
|
214 |
|
215 |
|
|
|
247 |
label="Nested text column name", visible=False
|
248 |
)
|
249 |
|
250 |
+
generate_button = gr.Button("Generate Topics", variant="primary")
|
251 |
|
252 |
gr.Markdown("## Datamap")
|
253 |
topics_plot = gr.Plot()
|