datafreak's picture
some major updates on UI and backend
b4dfce4 verified
import gradio as gr
import json
import os
from datetime import datetime
from dotenv import load_dotenv
from supabase import create_client, Client
from pinecone import Pinecone
from sentence_transformers import SentenceTransformer
from typing import List, Dict
load_dotenv()
SUPABASE_URL = os.getenv("DB_URL")
SUPABASE_KEY = os.getenv("DB_KEY")
pinecone_api_key = os.getenv("PINECONE")
supabase_client = create_client(SUPABASE_URL, SUPABASE_KEY)
pc = Pinecone(api_key=pinecone_api_key)
index = pc.Index("focus-guru")
model = SentenceTransformer("all-MiniLM-L6-v2")
def ingest_user_progress(
supabase_client: Client,
user_id: int,
video_id: str,
rating: float,
time_spent: int,
play_count: int,
completed: bool
):
data = {
"user_id": user_id,
"video_id": video_id,
"rating": rating,
"time_spent": time_spent,
"play_count": play_count,
"completed": completed,
"updated_at": datetime.now().isoformat()
}
response = supabase_client.table("user_progress").insert(data, upsert=True).execute()
return response.data
def gradio_ingest(user_input):
try:
data = json.loads(user_input)
user_id = int(data.get("user_id", 0))
video_id = data.get("video_id", "")
rating = float(data.get("rating", 0))
time_spent = int(data.get("time_spent", 0))
play_count = int(data.get("play_count", 0))
completed = bool(data.get("completed", False))
except Exception as e:
return f"<p style='color: red;'>Error parsing input: {e}</p>"
res = ingest_user_progress(supabase_client, user_id, video_id, rating, time_spent, play_count, completed)
return f"<p style='color: green;'>Ingested data: {res}</p>"
def recommend_playlists_by_package_and_module(assessment_output, index, model):
report_text = assessment_output.get("report", "")
packages = assessment_output.get("package", [])
modules = ["Nutrition", "Exercise", "Meditation"]
recommendations = {}
if not report_text:
for pkg in packages:
recommendations[pkg] = {mod: {"title": "No playlist found", "description": ""} for mod in modules}
return recommendations
query_embedding = model.encode(report_text, convert_to_numpy=True).tolist()
for pkg in packages:
recommendations[pkg] = {}
for mod in modules:
filter_dict = {"type": "playlist", "Package": pkg, "Module": mod}
results = index.query(vector=query_embedding, top_k=1, include_metadata=True, filter=filter_dict)
if results["matches"]:
match = results["matches"][0]
metadata = match["metadata"]
title = metadata.get("Playlist Name", "Unknown Playlist")
description = metadata.get("Description", "")
recommendations[pkg][mod] = {"title": title, "description": description}
else:
recommendations[pkg][mod] = {"title": "No playlist found", "description": ""}
return recommendations
def gradio_recommend_playlist(input_json):
try:
assessment_data = json.loads(input_json)
except json.JSONDecodeError:
return "<p style='color: red;'>Error: Invalid JSON format</p>"
if "package" not in assessment_data or "report" not in assessment_data:
return "<p style='color: red;'>Error: Missing 'package' or 'report' field</p>"
recs = recommend_playlists_by_package_and_module(assessment_data, index, model)
html_output = "<div style='padding: 20px; font-family: Arial, sans-serif;'>"
for pkg, mod_recs in recs.items():
html_output += f"<h2>{pkg} Package</h2><div style='display: flex; flex-wrap: wrap; gap: 20px;'>"
for mod, rec in mod_recs.items():
html_output += f"""
<div style="border: 1px solid #ccc; border-radius: 8px; padding: 15px; width: 260px;">
<h3>{mod} Module</h3>
<strong>{rec['title']}</strong>
<p>{rec['description']}</p>
</div>
"""
html_output += "</div>"
html_output += "</div>"
return html_output
def recommend_videos(user_id: int, K: int = 5, M: int = 10, N: int = 5) -> Dict:
response = supabase_client.table("user_progress").select("video_id, rating, completed, play_count, videos!inner(playlist_id)").eq("user_id", user_id).execute()
interactions = response.data
if not interactions:
return {
"note": "No interactions recorded for this user yet. Please watch or rate some videos.",
"recommendations": []
}
for inter in interactions:
rating = inter["rating"] if inter["rating"] is not None else 0
completed_val = 1 if inter["completed"] else 0
play_count = inter["play_count"]
inter["engagement"] = rating + 2 * completed_val + play_count
top_videos = sorted(interactions, key=lambda x: x["engagement"], reverse=True)[:K]
watched_completed_videos = {i["video_id"] for i in interactions if i["completed"]}
watched_incomplete_videos = {i["video_id"] for i in interactions if not i["completed"]}
candidates = {}
for top_video in top_videos:
query_id = f"video_{top_video['video_id']}"
response = index.query(id=query_id, top_k=M + 1, include_metadata=True)
for match in response.get("matches", []):
if match["id"] == query_id:
continue
metadata = match.get("metadata", {})
vid = metadata.get("vid")
if not vid:
continue
if vid in watched_completed_videos:
continue
similarity = match["score"]
pid = metadata.get("PID")
boost = 1.1 if pid == top_video["videos"]["playlist_id"] else 1.0
partial_score = top_video["engagement"] * similarity * boost
if vid in candidates:
candidates[vid]["total_score"] += partial_score
else:
candidates[vid] = {"total_score": partial_score, "metadata": metadata}
sorted_candidates = sorted(candidates.items(), key=lambda x: x[1]["total_score"], reverse=True)[:N]
recommendations = []
for vid, data in sorted_candidates:
metadata = data["metadata"]
video_title = metadata.get("video_title", "Untitled Video")
if vid in watched_incomplete_videos:
video_title += " (Incomplete)"
recommendations.append({
"video_id": vid,
"title": video_title,
"description": metadata.get("video_description", ""),
"score": data["total_score"]
})
note_text = "Based on your engagement, here are some recommended videos from the same playlist."
return {"note": note_text, "recommendations": recommendations}
def gradio_recommend_videos(user_id_input):
try:
user_id = int(user_id_input)
except Exception as e:
return f"Error: {e}", ""
result = recommend_videos(user_id)
note_text = result["note"]
recs = result["recommendations"]
if not recs:
return note_text, ""
html_output = "<div>"
# Use black cards with white text and orange border for visibility
for rec in recs:
html_output += f"""
<div style="background: #000; color: #fff; border: 2px solid orange; border-radius: 8px; margin-bottom: 10px; padding: 15px;">
<h3 style="margin-top: 0;">{rec['title']}</h3>
<p style="margin: 0;">{rec['description']}</p>
<p style="margin: 0;"><strong>Score:</strong> {rec['score']:.2f}</p>
</div>
"""
html_output += "</div>"
return note_text, html_output
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Playlist Recommendation"):
playlist_input = gr.Textbox(
lines=10,
label="Assessment Data (JSON)",
placeholder='''{
"package": ["Focus", "Insomnia"],
"report": "Based on your responses, you may struggle with focus, anxiety, and burnout..."
}'''
)
playlist_output = gr.HTML(label="Recommended Playlists")
playlist_btn = gr.Button("Get Playlist Recommendations")
playlist_btn.click(fn=gradio_recommend_playlist, inputs=playlist_input, outputs=playlist_output)
with gr.TabItem("Video Recommendation"):
user_id_input = gr.Textbox(lines=1, label="User ID", placeholder="1")
note_output = gr.Textbox(label="Recommendation Note", interactive=False)
videos_output = gr.HTML(label="Recommended Videos")
videos_btn = gr.Button("Get Video Recommendations")
videos_btn.click(fn=gradio_recommend_videos, inputs=user_id_input, outputs=[note_output, videos_output])
with gr.TabItem("User Interaction Ingestion"):
ingest_input = gr.Textbox(
lines=10,
label="User Progress Data (JSON)",
placeholder='''{
"user_id": 1,
"video_id": "abc123",
"rating": 4.5,
"time_spent": 300,
"play_count": 1,
"completed": false
}'''
)
ingest_output = gr.HTML(label="Ingestion Result")
ingest_btn = gr.Button("Ingest Data")
ingest_btn.click(fn=gradio_ingest, inputs=ingest_input, outputs=ingest_output)
demo.launch()