File size: 9,595 Bytes
2964773
 
 
 
 
 
 
 
 
 
 
 
 
 
b4dfce4
 
2964773
 
b4dfce4
2964773
b4dfce4
 
 
 
 
 
 
 
 
2964773
b4dfce4
 
 
 
 
 
 
2964773
b4dfce4
2964773
 
 
 
 
 
 
 
 
 
 
 
b4dfce4
2964773
b4dfce4
2964773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4dfce4
2964773
b4dfce4
2964773
b4dfce4
2964773
b4dfce4
2964773
b4dfce4
 
 
 
 
2964773
 
 
 
 
 
b4dfce4
 
2964773
 
b4dfce4
 
 
 
2964773
b4dfce4
 
 
 
 
 
 
2964773
 
 
 
b4dfce4
 
2964773
b4dfce4
 
2964773
 
 
 
b4dfce4
 
 
 
2964773
b4dfce4
2964773
b4dfce4
 
2964773
 
b4dfce4
 
 
 
2964773
b4dfce4
 
 
 
2964773
b4dfce4
 
2964773
 
 
 
 
b4dfce4
 
 
 
2964773
b4dfce4
 
 
2964773
b4dfce4
 
 
 
 
2964773
 
b4dfce4
 
2964773
 
 
 
 
 
 
 
 
b4dfce4
2964773
 
 
 
b4dfce4
2964773
 
b4dfce4
2964773
 
b4dfce4
2964773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4dfce4
2964773
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import json
import os
from datetime import datetime
from dotenv import load_dotenv
from supabase import create_client, Client
from pinecone import Pinecone
from sentence_transformers import SentenceTransformer
from typing import List, Dict

load_dotenv()
SUPABASE_URL = os.getenv("DB_URL")
SUPABASE_KEY = os.getenv("DB_KEY")
pinecone_api_key = os.getenv("PINECONE")

supabase_client = create_client(SUPABASE_URL, SUPABASE_KEY)
pc = Pinecone(api_key=pinecone_api_key)
index = pc.Index("focus-guru")
model = SentenceTransformer("all-MiniLM-L6-v2")

def ingest_user_progress(

    supabase_client: Client,

    user_id: int,

    video_id: str,

    rating: float,

    time_spent: int,

    play_count: int,

    completed: bool

):
    data = {
        "user_id": user_id,
        "video_id": video_id,
        "rating": rating,
        "time_spent": time_spent,
        "play_count": play_count,
        "completed": completed,
        "updated_at": datetime.now().isoformat()
    }
    response = supabase_client.table("user_progress").insert(data, upsert=True).execute()
    return response.data

def gradio_ingest(user_input):
    try:
        data = json.loads(user_input)
        user_id = int(data.get("user_id", 0))
        video_id = data.get("video_id", "")
        rating = float(data.get("rating", 0))
        time_spent = int(data.get("time_spent", 0))
        play_count = int(data.get("play_count", 0))
        completed = bool(data.get("completed", False))
    except Exception as e:
        return f"<p style='color: red;'>Error parsing input: {e}</p>"
    res = ingest_user_progress(supabase_client, user_id, video_id, rating, time_spent, play_count, completed)
    return f"<p style='color: green;'>Ingested data: {res}</p>"

def recommend_playlists_by_package_and_module(assessment_output, index, model):
    report_text = assessment_output.get("report", "")
    packages = assessment_output.get("package", [])
    modules = ["Nutrition", "Exercise", "Meditation"]
    recommendations = {}
    if not report_text:
        for pkg in packages:
            recommendations[pkg] = {mod: {"title": "No playlist found", "description": ""} for mod in modules}
        return recommendations
    query_embedding = model.encode(report_text, convert_to_numpy=True).tolist()
    for pkg in packages:
        recommendations[pkg] = {}
        for mod in modules:
            filter_dict = {"type": "playlist", "Package": pkg, "Module": mod}
            results = index.query(vector=query_embedding, top_k=1, include_metadata=True, filter=filter_dict)
            if results["matches"]:
                match = results["matches"][0]
                metadata = match["metadata"]
                title = metadata.get("Playlist Name", "Unknown Playlist")
                description = metadata.get("Description", "")
                recommendations[pkg][mod] = {"title": title, "description": description}
            else:
                recommendations[pkg][mod] = {"title": "No playlist found", "description": ""}
    return recommendations

def gradio_recommend_playlist(input_json):
    try:
        assessment_data = json.loads(input_json)
    except json.JSONDecodeError:
        return "<p style='color: red;'>Error: Invalid JSON format</p>"
    if "package" not in assessment_data or "report" not in assessment_data:
        return "<p style='color: red;'>Error: Missing 'package' or 'report' field</p>"
    recs = recommend_playlists_by_package_and_module(assessment_data, index, model)
    html_output = "<div style='padding: 20px; font-family: Arial, sans-serif;'>"
    for pkg, mod_recs in recs.items():
        html_output += f"<h2>{pkg} Package</h2><div style='display: flex; flex-wrap: wrap; gap: 20px;'>"
        for mod, rec in mod_recs.items():
            html_output += f"""

            <div style="border: 1px solid #ccc; border-radius: 8px; padding: 15px; width: 260px;">

                <h3>{mod} Module</h3>

                <strong>{rec['title']}</strong>

                <p>{rec['description']}</p>

            </div>

            """
        html_output += "</div>"
    html_output += "</div>"
    return html_output

def recommend_videos(user_id: int, K: int = 5, M: int = 10, N: int = 5) -> Dict:
    response = supabase_client.table("user_progress").select("video_id, rating, completed, play_count, videos!inner(playlist_id)").eq("user_id", user_id).execute()
    interactions = response.data
    if not interactions:
        return {
            "note": "No interactions recorded for this user yet. Please watch or rate some videos.",
            "recommendations": []
        }
    for inter in interactions:
        rating = inter["rating"] if inter["rating"] is not None else 0
        completed_val = 1 if inter["completed"] else 0
        play_count = inter["play_count"]
        inter["engagement"] = rating + 2 * completed_val + play_count
    top_videos = sorted(interactions, key=lambda x: x["engagement"], reverse=True)[:K]
    watched_completed_videos = {i["video_id"] for i in interactions if i["completed"]}
    watched_incomplete_videos = {i["video_id"] for i in interactions if not i["completed"]}
    candidates = {}
    for top_video in top_videos:
        query_id = f"video_{top_video['video_id']}"
        response = index.query(id=query_id, top_k=M + 1, include_metadata=True)
        for match in response.get("matches", []):
            if match["id"] == query_id:
                continue
            metadata = match.get("metadata", {})
            vid = metadata.get("vid")
            if not vid:
                continue
            if vid in watched_completed_videos:
                continue
            similarity = match["score"]
            pid = metadata.get("PID")
            boost = 1.1 if pid == top_video["videos"]["playlist_id"] else 1.0
            partial_score = top_video["engagement"] * similarity * boost
            if vid in candidates:
                candidates[vid]["total_score"] += partial_score
            else:
                candidates[vid] = {"total_score": partial_score, "metadata": metadata}
    sorted_candidates = sorted(candidates.items(), key=lambda x: x[1]["total_score"], reverse=True)[:N]
    recommendations = []
    for vid, data in sorted_candidates:
        metadata = data["metadata"]
        video_title = metadata.get("video_title", "Untitled Video")
        if vid in watched_incomplete_videos:
            video_title += " (Incomplete)"
        recommendations.append({
            "video_id": vid,
            "title": video_title,
            "description": metadata.get("video_description", ""),
            "score": data["total_score"]
        })
    note_text = "Based on your engagement, here are some recommended videos from the same playlist."
    return {"note": note_text, "recommendations": recommendations}

def gradio_recommend_videos(user_id_input):
    try:
        user_id = int(user_id_input)
    except Exception as e:
        return f"Error: {e}", ""
    result = recommend_videos(user_id)
    note_text = result["note"]
    recs = result["recommendations"]
    if not recs:
        return note_text, ""
    html_output = "<div>"
    # Use black cards with white text and orange border for visibility
    for rec in recs:
        html_output += f"""

        <div style="background: #000; color: #fff; border: 2px solid orange; border-radius: 8px; margin-bottom: 10px; padding: 15px;">

            <h3 style="margin-top: 0;">{rec['title']}</h3>

            <p style="margin: 0;">{rec['description']}</p>

            <p style="margin: 0;"><strong>Score:</strong> {rec['score']:.2f}</p>

        </div>

        """
    html_output += "</div>"
    return note_text, html_output

with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Playlist Recommendation"):
            playlist_input = gr.Textbox(
                lines=10,
                label="Assessment Data (JSON)",
                placeholder='''{

  "package": ["Focus", "Insomnia"],

  "report": "Based on your responses, you may struggle with focus, anxiety, and burnout..."

}'''
            )
            playlist_output = gr.HTML(label="Recommended Playlists")
            playlist_btn = gr.Button("Get Playlist Recommendations")
            playlist_btn.click(fn=gradio_recommend_playlist, inputs=playlist_input, outputs=playlist_output)
        with gr.TabItem("Video Recommendation"):
            user_id_input = gr.Textbox(lines=1, label="User ID", placeholder="1")
            note_output = gr.Textbox(label="Recommendation Note", interactive=False)
            videos_output = gr.HTML(label="Recommended Videos")
            videos_btn = gr.Button("Get Video Recommendations")
            videos_btn.click(fn=gradio_recommend_videos, inputs=user_id_input, outputs=[note_output, videos_output])
        with gr.TabItem("User Interaction Ingestion"):
            ingest_input = gr.Textbox(
                lines=10,
                label="User Progress Data (JSON)",
                placeholder='''{

  "user_id": 1,

  "video_id": "abc123",

  "rating": 4.5,

  "time_spent": 300,

  "play_count": 1,

  "completed": false

}'''
            )
            ingest_output = gr.HTML(label="Ingestion Result")
            ingest_btn = gr.Button("Ingest Data")
            ingest_btn.click(fn=gradio_ingest, inputs=ingest_input, outputs=ingest_output)

demo.launch()