Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +233 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from datetime import datetime
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from supabase import create_client, Client
|
7 |
+
from pinecone import Pinecone
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from typing import List, Dict
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
SUPABASE_URL = os.getenv("DB_URL")
|
13 |
+
SUPABASE_KEY = os.getenv("DB_KEY")
|
14 |
+
supabase_client = create_client(SUPABASE_URL, SUPABASE_KEY)
|
15 |
+
|
16 |
+
pinecone_api_key = os.getenv("PINECONE")
|
17 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
18 |
+
index = pc.Index("focus-guru")
|
19 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
20 |
+
|
21 |
+
def ingest_user_progress(supabase_client: Client, user_id: int, video_id: str, rating: float, time_spent: int, play_count: int, completed: bool):
|
22 |
+
data = {
|
23 |
+
'user_id': user_id,
|
24 |
+
'video_id': video_id,
|
25 |
+
'rating': rating,
|
26 |
+
'time_spent': time_spent,
|
27 |
+
'play_count': play_count,
|
28 |
+
'completed': completed,
|
29 |
+
'updated_at': datetime.now().isoformat()
|
30 |
+
}
|
31 |
+
response = supabase_client.table('user_progress').insert(data, upsert=True).execute()
|
32 |
+
return response.data
|
33 |
+
|
34 |
+
def gradio_ingest(user_input):
|
35 |
+
try:
|
36 |
+
data = json.loads(user_input)
|
37 |
+
user_id = int(data.get("user_id", 0))
|
38 |
+
video_id = data.get("video_id", "")
|
39 |
+
rating = float(data.get("rating", 0))
|
40 |
+
time_spent = int(data.get("time_spent", 0))
|
41 |
+
play_count = int(data.get("play_count", 0))
|
42 |
+
completed = bool(data.get("completed", False))
|
43 |
+
except Exception as e:
|
44 |
+
return f"<div style='color: red;'>Error parsing input: {e}</div>"
|
45 |
+
res = ingest_user_progress(supabase_client, user_id, video_id, rating, time_spent, play_count, completed)
|
46 |
+
return f"<div style='color: green;'>Ingested data: {res}</div>"
|
47 |
+
|
48 |
+
def recommend_playlists_by_package_and_module(assessment_output, index, model):
|
49 |
+
report_text = assessment_output.get("report", "")
|
50 |
+
packages = assessment_output.get("package", [])
|
51 |
+
modules = ["Nutrition", "Exercise", "Meditation"]
|
52 |
+
recommendations = {}
|
53 |
+
if not report_text:
|
54 |
+
for pkg in packages:
|
55 |
+
recommendations[pkg] = {mod: {"title": "No playlist found", "description": ""} for mod in modules}
|
56 |
+
return recommendations
|
57 |
+
query_embedding = model.encode(report_text, convert_to_numpy=True).tolist()
|
58 |
+
for pkg in packages:
|
59 |
+
recommendations[pkg] = {}
|
60 |
+
for mod in modules:
|
61 |
+
filter_dict = {"type": "playlist", "Package": pkg, "Module": mod}
|
62 |
+
results = index.query(vector=query_embedding, top_k=1, include_metadata=True, filter=filter_dict)
|
63 |
+
if results["matches"]:
|
64 |
+
match = results["matches"][0]
|
65 |
+
metadata = match["metadata"]
|
66 |
+
title = metadata.get("Playlist Name", "Unknown Playlist")
|
67 |
+
description = metadata.get("Description", "")
|
68 |
+
recommendations[pkg][mod] = {"title": title, "description": description}
|
69 |
+
else:
|
70 |
+
recommendations[pkg][mod] = {"title": "No playlist found", "description": ""}
|
71 |
+
return recommendations
|
72 |
+
|
73 |
+
def gradio_recommend_playlist(input_json):
|
74 |
+
try:
|
75 |
+
assessment_data = json.loads(input_json)
|
76 |
+
except json.JSONDecodeError:
|
77 |
+
return "<div style='color: red;'>Error: Invalid JSON format</div>"
|
78 |
+
if "package" not in assessment_data or "report" not in assessment_data:
|
79 |
+
return "<div style='color: red;'>Error: Missing 'package' or 'report' field</div>"
|
80 |
+
recs = recommend_playlists_by_package_and_module(assessment_data, index, model)
|
81 |
+
html_output = """
|
82 |
+
<div style="
|
83 |
+
display: flex;
|
84 |
+
flex-direction: column;
|
85 |
+
gap: 30px;
|
86 |
+
padding: 20px;
|
87 |
+
font-family: Arial, sans-serif;
|
88 |
+
">
|
89 |
+
"""
|
90 |
+
for pkg, mod_recs in recs.items():
|
91 |
+
html_output += f"<h2 style='color: #2d3436;'>{pkg} Package</h2>"
|
92 |
+
html_output += "<div style='display: flex; flex-wrap: wrap; gap: 20px;'>"
|
93 |
+
for mod, rec in mod_recs.items():
|
94 |
+
card_html = f"""
|
95 |
+
<div style="
|
96 |
+
border: 1px solid #e0e0e0;
|
97 |
+
border-radius: 10px;
|
98 |
+
padding: 20px;
|
99 |
+
background: white;
|
100 |
+
width: 300px;
|
101 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
102 |
+
">
|
103 |
+
<h3 style="margin: 0 0 12px 0; color: #0984e3;">{mod} Module</h3>
|
104 |
+
<h4 style="margin: 0 0 8px 0; color: #2d3436;">{rec['title']}</h4>
|
105 |
+
<p style="margin: 0; color: #636e72; line-height: 1.5;">{rec['description']}</p>
|
106 |
+
</div>
|
107 |
+
"""
|
108 |
+
html_output += card_html
|
109 |
+
html_output += "</div>"
|
110 |
+
html_output += "</div>"
|
111 |
+
return html_output
|
112 |
+
|
113 |
+
def recommend_videos(user_id: int, K: int = 5, M: int = 10, N: int = 5) -> List[Dict]:
|
114 |
+
response = supabase_client.table('user_progress').select('video_id, rating, completed, play_count, videos!inner(playlist_id)').eq('user_id', user_id).execute()
|
115 |
+
interactions = response.data
|
116 |
+
if not interactions:
|
117 |
+
return []
|
118 |
+
for inter in interactions:
|
119 |
+
rating = inter['rating'] if inter['rating'] is not None else 0
|
120 |
+
completed_val = 1 if inter['completed'] else 0
|
121 |
+
play_count = inter['play_count']
|
122 |
+
engagement = rating + 2 * completed_val + play_count
|
123 |
+
inter['engagement'] = engagement
|
124 |
+
top_videos = sorted(interactions, key=lambda x: x['engagement'], reverse=True)[:K]
|
125 |
+
watched_completed_videos = {i['video_id'] for i in interactions if i['completed']}
|
126 |
+
candidates = {}
|
127 |
+
for top_video in top_videos:
|
128 |
+
query_id = f"video_{top_video['video_id']}"
|
129 |
+
response = index.query(id=query_id, top_k=M + 1, include_metadata=True)
|
130 |
+
for match in response.get('matches', []):
|
131 |
+
if match['id'] == query_id:
|
132 |
+
continue
|
133 |
+
metadata = match.get('metadata', {})
|
134 |
+
vid = metadata.get('vid')
|
135 |
+
if not vid:
|
136 |
+
continue
|
137 |
+
if vid in watched_completed_videos:
|
138 |
+
continue
|
139 |
+
similarity = match['score']
|
140 |
+
pid = metadata.get('PID')
|
141 |
+
boost = 1.1 if pid == top_video['videos']['playlist_id'] else 1.0
|
142 |
+
partial_score = top_video['engagement'] * similarity * boost
|
143 |
+
if vid in candidates:
|
144 |
+
candidates[vid]['total_score'] += partial_score
|
145 |
+
else:
|
146 |
+
candidates[vid] = {'total_score': partial_score, 'metadata': metadata}
|
147 |
+
sorted_candidates = sorted(candidates.items(), key=lambda x: x[1]['total_score'], reverse=True)[:N]
|
148 |
+
recommendations = []
|
149 |
+
for vid, data in sorted_candidates:
|
150 |
+
metadata = data['metadata']
|
151 |
+
recommendations.append({
|
152 |
+
'video_id': vid,
|
153 |
+
'title': metadata.get('video_title'),
|
154 |
+
'description': metadata.get('video_description'),
|
155 |
+
'score': data['total_score']
|
156 |
+
})
|
157 |
+
return recommendations
|
158 |
+
|
159 |
+
def gradio_recommend_videos(user_id_input):
|
160 |
+
try:
|
161 |
+
user_id = int(user_id_input)
|
162 |
+
except Exception as e:
|
163 |
+
return f"<div style='color: red;'>Error: {e}</div>"
|
164 |
+
recs = recommend_videos(user_id)
|
165 |
+
if not recs:
|
166 |
+
return "<div style='color: #636e72;'>No video recommendations found for this user.</div>"
|
167 |
+
html_output = """
|
168 |
+
<div style="
|
169 |
+
display: flex;
|
170 |
+
flex-direction: column;
|
171 |
+
gap: 30px;
|
172 |
+
padding: 20px;
|
173 |
+
font-family: Arial, sans-serif;
|
174 |
+
">
|
175 |
+
"""
|
176 |
+
html_output += "<h2 style='color: #2d3436;'>Recommended Videos</h2>"
|
177 |
+
html_output += "<div style='display: flex; flex-wrap: wrap; gap: 20px;'>"
|
178 |
+
for rec in recs:
|
179 |
+
card_html = f"""
|
180 |
+
<div style="
|
181 |
+
border: 1px solid #e0e0e0;
|
182 |
+
border-radius: 10px;
|
183 |
+
padding: 20px;
|
184 |
+
background: white;
|
185 |
+
width: 300px;
|
186 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
187 |
+
">
|
188 |
+
<h3 style="margin: 0 0 12px 0; color: #0984e3;">{rec['title']}</h3>
|
189 |
+
<p style="margin: 0 0 8px 0; color: #636e72;">{rec['description']}</p>
|
190 |
+
<p style="margin: 0; color: #2d3436;">Score: {rec['score']:.2f}</p>
|
191 |
+
</div>
|
192 |
+
"""
|
193 |
+
html_output += card_html
|
194 |
+
html_output += "</div></div>"
|
195 |
+
return html_output
|
196 |
+
|
197 |
+
with gr.Blocks() as demo:
|
198 |
+
with gr.Tabs():
|
199 |
+
with gr.TabItem("Playlist Recommendation"):
|
200 |
+
playlist_input = gr.Textbox(
|
201 |
+
lines=10,
|
202 |
+
label="Assessment Data (JSON)",
|
203 |
+
placeholder='''{
|
204 |
+
"package": ["Focus", "Insomnia"],
|
205 |
+
"report": "Based on your responses, you may struggle with focus, anxiety, and burnout. The Focus and Insomnia packages can help improve your mental clarity and sleep quality."
|
206 |
+
}'''
|
207 |
+
)
|
208 |
+
playlist_output = gr.HTML(label="Recommended Playlists")
|
209 |
+
playlist_btn = gr.Button("Get Playlist Recommendations")
|
210 |
+
playlist_btn.click(gradio_recommend_playlist, playlist_input, playlist_output)
|
211 |
+
with gr.TabItem("Video Recommendation"):
|
212 |
+
user_id_input = gr.Textbox(lines=1, label="User ID", placeholder="1")
|
213 |
+
videos_output = gr.HTML(label="Recommended Videos")
|
214 |
+
videos_btn = gr.Button("Get Video Recommendations")
|
215 |
+
videos_btn.click(gradio_recommend_videos, user_id_input, videos_output)
|
216 |
+
with gr.TabItem("User Interaction Ingestion"):
|
217 |
+
ingest_input = gr.Textbox(
|
218 |
+
lines=10,
|
219 |
+
label="User Progress Data (JSON)",
|
220 |
+
placeholder='''{
|
221 |
+
"user_id": 1,
|
222 |
+
"video_id": "abc123",
|
223 |
+
"rating": 4.5,
|
224 |
+
"time_spent": 300,
|
225 |
+
"play_count": 1,
|
226 |
+
"completed": false
|
227 |
+
}'''
|
228 |
+
)
|
229 |
+
ingest_output = gr.HTML(label="Ingestion Result")
|
230 |
+
ingest_btn = gr.Button("Ingest Data")
|
231 |
+
ingest_btn.click(gradio_ingest, ingest_input, ingest_output)
|
232 |
+
|
233 |
+
demo.launch()
|
requirements.txt
ADDED
Binary file (3.35 kB). View file
|
|