Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
import torchvision | |
import cv2 | |
import numpy as np | |
import torch.nn as nn | |
from torchvision.ops import box_iou | |
from PIL import Image | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
# apply nms algorithm | |
def apply_nms(orig_prediction, iou_thresh=0.3): | |
# torchvision returns the indices of the bboxes to keep | |
keep = torchvision.ops.nms(orig_prediction['boxes'], orig_prediction['scores'], iou_thresh) | |
final_prediction = orig_prediction | |
final_prediction['boxes'] = final_prediction['boxes'][keep] | |
final_prediction['scores'] = final_prediction['scores'][keep] | |
final_prediction['labels'] = final_prediction['labels'][keep] | |
return final_prediction | |
# Draw the bounding box | |
def plot_img_bbox(img, target): | |
h,w,c = img.shape | |
for box in (target['boxes']): | |
xmin, ymin, xmax, ymax = int((box[0].cpu()/1024)*w), int((box[1].cpu()/1024)*h), int((box[2].cpu()/1024)*w),int((box[3].cpu()/1024)*h) | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2) | |
label = "palm" | |
# Add the label and confidence score | |
label = f'{label}' | |
cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) | |
# Display the image with detections | |
filename = 'pred.jpg' | |
cv2.imwrite(filename, img) | |
# transform image | |
test_transforms = A.Compose([ | |
A.Resize(height=1024, width=1024, always_apply=True), | |
A.Normalize(always_apply=True), | |
ToTensorV2(always_apply=True),]) | |
# select device (whether GPU or CPU) | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
# model loading | |
model = torch.load('pickel.pth',map_location=torch.device('cpu')) | |
model = model.to(device) | |
st.title("🌴Palm trees detection🌴") | |
file_name = st.file_uploader("Upload oil palm tree image") | |
if file_name is not None: | |
col1, col2 = st.columns(2) | |
image = np.array(Image.open(file_name)) | |
col1.image(image, use_column_width=True) | |
transformed = test_transforms(image= image) | |
image_transformed = transformed["image"] | |
image_transformed = image_transformed.unsqueeze(0) | |
image_transformed = image_transformed.to(device) | |
# inference | |
model.eval() | |
with torch.no_grad(): | |
predictions = model(image_transformed)[0] | |
nms_prediction = apply_nms(predictions, iou_thresh=0.1) | |
plot_img_bbox(image, nms_prediction) | |
pred = np.array(Image.open("pred.jpg")) | |
col2.image(pred, use_column_width=True) | |
word = "Number of palm trees detected : "+str(len(nms_prediction["boxes"])) | |
st.write(word) | |