import streamlit as st import torch import torchvision import cv2 import numpy as np import torch.nn as nn from torchvision.ops import box_iou from PIL import Image import albumentations as A from albumentations.pytorch import ToTensorV2 # apply nms algorithm def apply_nms(orig_prediction, iou_thresh=0.3): # torchvision returns the indices of the bboxes to keep keep = torchvision.ops.nms(orig_prediction['boxes'], orig_prediction['scores'], iou_thresh) final_prediction = orig_prediction final_prediction['boxes'] = final_prediction['boxes'][keep] final_prediction['scores'] = final_prediction['scores'][keep] final_prediction['labels'] = final_prediction['labels'][keep] return final_prediction # Draw the bounding box def plot_img_bbox(img, target): h,w,c = img.shape for box in (target['boxes']): xmin, ymin, xmax, ymax = int((box[0].cpu()/1024)*w), int((box[1].cpu()/1024)*h), int((box[2].cpu()/1024)*w),int((box[3].cpu()/1024)*h) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2) label = "palm" # Add the label and confidence score label = f'{label}' cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) # Display the image with detections filename = 'pred.jpg' cv2.imwrite(filename, img) # transform image test_transforms = A.Compose([ A.Resize(height=1024, width=1024, always_apply=True), A.Normalize(always_apply=True), ToTensorV2(always_apply=True),]) # select device (whether GPU or CPU) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # model loading model = torch.load('pickel.pth',map_location=torch.device('cpu')) model = model.to(device) st.title("🌴Palm trees detection🌴") file_name = st.file_uploader("Upload oil palm tree image") if file_name is not None: col1, col2 = st.columns(2) image = np.array(Image.open(file_name)) col1.image(image, use_column_width=True) transformed = test_transforms(image= image) image_transformed = transformed["image"] image_transformed = image_transformed.unsqueeze(0) image_transformed = image_transformed.to(device) # inference model.eval() with torch.no_grad(): predictions = model(image_transformed)[0] nms_prediction = apply_nms(predictions, iou_thresh=0.1) plot_img_bbox(image, nms_prediction) pred = np.array(Image.open("pred.jpg")) col2.image(pred, use_column_width=True) word = "Number of palm trees detected : "+str(len(nms_prediction["boxes"])) st.write(word)