Spaces:
Sleeping
title: IRIS Classification Lambda
emoji: 🏢
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: 5.5.0
app_file: app.py
pinned: false
short_description: IRIS Classification Lambda
IRIS classification task with AWS Lambda
Aims: Categorization of different species of iris flowers (Setosa, Versicolor, and Virginica) based on measurements of physical characteristics (sepals and petals).
Architecture:
- Front-end: user interface via Gradio library
- Back-end: use of AWS Lambda function to run deployed ML model
You can try out our deployed Hugging Face Space!
Table of contents:
1. Local development
1.1 Training the ML model
bash
python train.py
1.2. Docker container
- Building the docker image
bash
docker build -t iris-classification-lambda .
- Running the docker container
bash
docker run --name iris-classification-lambda-cont -p 8080:8080 iris-classification-lambda
1.3. Execution via command line
Example of a prediction request
bash
curl -X POST "http://localhost:8080/2015-03-31/functions/function/invocations" -H "Content-Type: application/json" -d '{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}'
python
python3 inference_api.py --url http://localhost:8080/2015-03-31/functions/function/invocations -d '{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}'
1.4. Execution via user interface
Use of Gradio library for web interface
Note: The environment variable AWS_API
should point to the local container
export AWS_API=http://localhost:8080
Command line for execution:
python3 app.py
The Gradio web application should now be accessible at http://localhost:7860
2. Deployment to AWS
2.1. Pushing the docker container to AWS ECR
Steps:
- Create new ECR Repository via aws console
Example: iris-classification-lambda
Optional for aws cli configuration (to run above commands):
aws configure
Authenticate Docker client to the Amazon ECR registry
aws ecr get-login-password --region | docker login --username AWS --password-stdin .dkr.ecr..amazonaws.com
Tag local docker image with the Amazon ECR registry and repository
docker tag iris-classification-lambda:latest .dkr.ecr..amazonaws.com/iris-classification-lambda:latest
Push docker image to ECR
docker push .dkr.ecr..amazonaws.com/iris-classification-lambda:latest
2.2. Creating and testing a Lambda function
Steps:
- Create function from container image
Example name: iris-classification
- Notes: the API endpoint will use the
lambda_function.py
file andlambda_hander
function - Test the lambda via the AWS console
Example JSON object:
{
"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]
}
Advanced notes:
- Steps to update the Lambda function with latest container via aws cli:
aws lambda update-function-code --function-name iris-classification --image-uri .dkr.ecr..amazonaws.com/iris-classification-lambda:latest
2.3. Creating an API via API Gateway
Steps:
- Create a new
Rest API
(e.g.iris-classification-api
) - Add a new resource to the API (e.g.
/classify
) - Add a
POST
method to the resource - Integrate the Lambda function to the API
- Notes: using proxy integration option unchecked
- Deploy API with a specific stage (e.g.
test
stage)
Example AWS API Endpoint:
https://<api_id>.execute-api.<aws_region>.amazonaws.com/test/classify
2.4. Execution for deployed model
Example of a prediction request
bash
curl -X POST "https://.execute-api..amazonaws.com/test/classify" -H "Content-Type: application/json" -d '{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}'
python
python3 inference_api.py --url https://.execute-api..amazonaws.com/test/classify -d '{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}'
3. Deployment to Hugging Face
This web application is available on Hugging Face
Hugging Face space URL: https://huggingface.co/spaces/cvachet/iris_classification_lambda
Note: This space uses the ML model deployed on AWS Lambda