|
''' |
|
@Description: |
|
@Author: jiajunlong |
|
@Date: 2024-06-19 19:30:17 |
|
@LastEditTime: 2024-06-19 19:32:47 |
|
@LastEditors: jiajunlong |
|
''' |
|
import argparse |
|
import hashlib |
|
import json |
|
from pathlib import Path |
|
import time |
|
from threading import Thread |
|
import logging |
|
|
|
import gradio as gr |
|
import torch |
|
from transformers import TextIteratorStreamer |
|
|
|
from tinyllava.utils import * |
|
from tinyllava.data import * |
|
from tinyllava.model import * |
|
|
|
DEFAULT_MODEL_PATH = "cpu4dream/llava-small-OpenELM-AIMv2-0.6B" |
|
|
|
|
|
block_css = """ |
|
|
|
#buttons button { |
|
min-width: min(120px,100%); |
|
} |
|
""" |
|
title_markdown = """ |
|
# Tiny Llava OpenELM-AIMv2 0.6B 🐛 |
|
|
|
## Multimodal Image Question Answering on CPU |
|
|
|
This space demonstrates the capabilities of the [cpu4dream/llava-small-OpenELM-AIMv2-0.6B](https://huggingface.co/cpu4dream/llava-small-OpenELM-AIMv2-0.6B) model, trained using the [TinyLLaVA Framework](https://github.com/TinyLLaVA/TinyLLaVA_Factory). |
|
""" |
|
tos_markdown = """ |
|
### Terms of use |
|
By using this service, users are required to agree to the following terms: |
|
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. |
|
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. |
|
""" |
|
learn_more_markdown = """ |
|
### License |
|
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. |
|
""" |
|
ack_markdown = """ |
|
### Acknowledgement |
|
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community! |
|
""" |
|
|
|
|
|
def regenerate(state, image_process_mode): |
|
state.messages[-1]['value'] = None |
|
state.skip_next = False |
|
return (state, state.to_gradio_chatbot(), "", None) |
|
|
|
|
|
def clear_history(): |
|
state = Message() |
|
return (state, state.to_gradio_chatbot(), "", None) |
|
|
|
|
|
def add_text(state, text, image, image_process_mode): |
|
if len(text) <= 0 and image is None: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), "", None) |
|
|
|
text = text[:1536] |
|
if image is not None: |
|
text = text[:1200] |
|
if "<image>" not in text: |
|
|
|
text = text + "\n<image>" |
|
if len(state.images) > 0: |
|
state = Message() |
|
state.add_image(image, len(state.messages)) |
|
state.add_message(text, None) |
|
state.skip_next = False |
|
return (state, state.to_gradio_chatbot(), "", None) |
|
|
|
|
|
def load_demo(): |
|
state = Message() |
|
return state |
|
|
|
|
|
@torch.inference_mode() |
|
def get_response(params): |
|
input_ids = params["input_ids"] |
|
prompt = params["prompt"] |
|
images = params.get("images", None) |
|
num_image_tokens = 0 |
|
if images is not None and len(images) > 0: |
|
if len(images) > 0: |
|
|
|
image = images[0][0] |
|
image = image_processor(image) |
|
image = image.unsqueeze(0).to(model.device, dtype=torch.float32) |
|
num_image_tokens = getattr(model.vision_tower._vision_tower, "num_patches", 336) |
|
else: |
|
image = None |
|
image_args = {"images": image} |
|
else: |
|
image = None |
|
image_args = {} |
|
|
|
temperature = float(params.get("temperature", 1.0)) |
|
top_p = float(params.get("top_p", 1.0)) |
|
max_context_length = getattr(model.config, "max_position_embeddings", 2048) |
|
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) |
|
stop_str = params.get("stop", None) |
|
do_sample = True if temperature > 0.001 else False |
|
logger.info(prompt) |
|
input_ids = input_ids.unsqueeze(0).to(model.device) |
|
|
|
|
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15 |
|
) |
|
|
|
max_new_tokens = min( |
|
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens |
|
) |
|
|
|
if max_new_tokens < 1: |
|
yield json.dumps( |
|
{ |
|
"text": prompt |
|
+ "Exceeds max token length. Please start a new conversation, thanks.", |
|
"error_code": 0, |
|
} |
|
).encode() + b"\0" |
|
return |
|
|
|
generate_kwargs = dict( |
|
inputs=input_ids, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_new_tokens, |
|
streamer=streamer, |
|
use_cache=True, |
|
pad_token_id = tokenizer.eos_token_id, |
|
**image_args, |
|
) |
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
logger.debug(prompt) |
|
logger.debug(generate_kwargs) |
|
generated_text = prompt |
|
for new_text in streamer: |
|
generated_text += new_text |
|
|
|
if generated_text.endswith(stop_str): |
|
generated_text = generated_text[: -len(stop_str)] |
|
yield json.dumps({"text": generated_text, "error_code": 0}).encode() |
|
|
|
|
|
def http_bot(state, temperature, top_p, max_new_tokens): |
|
if state.skip_next: |
|
|
|
yield (state, state.to_gradio_chatbot()) |
|
return |
|
|
|
|
|
images = state.images |
|
result = text_processor(state.messages, mode='eval') |
|
prompt = result['prompt'] |
|
input_ids = result['input_ids'] |
|
pload = { |
|
"model": model_name, |
|
"prompt": prompt, |
|
"input_ids": input_ids, |
|
"temperature": float(temperature), |
|
"top_p": float(top_p), |
|
"max_new_tokens": min(int(max_new_tokens), 1536), |
|
"stop": ( |
|
text_processor.template.separator.apply()[1] |
|
), "images": images} |
|
|
|
state.messages[-1]['value'] = "▌" |
|
yield (state, state.to_gradio_chatbot()) |
|
|
|
|
|
output = get_response(pload) |
|
for chunk in output: |
|
if chunk: |
|
data = json.loads(chunk.decode()) |
|
if data["error_code"] == 0: |
|
output = data["text"][len(prompt) :].strip() |
|
state.messages[-1]['value'] = output + "▌" |
|
yield (state, state.to_gradio_chatbot()) |
|
else: |
|
output = data["text"] + f" (error_code: {data['error_code']})" |
|
state.messages[-1]['value'] = output |
|
yield (state, state.to_gradio_chatbot()) |
|
return |
|
time.sleep(0.03) |
|
|
|
state.messages[-1]['value'] = state.messages[-1]['value'][:-1] |
|
yield (state, state.to_gradio_chatbot()) |
|
|
|
|
|
def build_demo(): |
|
textbox = gr.Textbox( |
|
show_label=False, placeholder="Enter text and press ENTER", container=False |
|
) |
|
with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo: |
|
state = gr.State() |
|
gr.Markdown(title_markdown) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
with gr.Row(elem_id="Model ID"): |
|
gr.Dropdown( |
|
choices=[DEFAULT_MODEL_PATH.split('/')[-1]], |
|
value=DEFAULT_MODEL_PATH.split('/')[-1], |
|
interactive=True, |
|
label="Model ID", |
|
container=False, |
|
) |
|
imagebox = gr.Image(type="pil") |
|
image_process_mode = gr.Radio( |
|
["Crop", "Resize", "Pad", "Default"], |
|
value="Default", |
|
label="Preprocess for non-square image", |
|
visible=False, |
|
) |
|
|
|
|
|
cur_dir = Path(__file__).parent |
|
gr.Examples( |
|
examples=[ |
|
[ |
|
f"{cur_dir}/examples/extreme_ironing.jpg", |
|
"What is unusual about this image?", |
|
], |
|
[ |
|
f"{cur_dir}/examples/waterview.jpg", |
|
"What are the things I should be cautious about when I visit here?", |
|
], |
|
], |
|
inputs=[imagebox, textbox], |
|
) |
|
|
|
with gr.Accordion("Parameters", open=False) as _: |
|
temperature = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.2, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.1, |
|
interactive=True, |
|
label="Top P", |
|
) |
|
max_output_tokens = gr.Slider( |
|
minimum=0, |
|
maximum=1024, |
|
value=512, |
|
step=64, |
|
interactive=True, |
|
label="Max output tokens", |
|
) |
|
|
|
with gr.Column(scale=8): |
|
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550) |
|
with gr.Row(): |
|
with gr.Column(scale=8): |
|
textbox.render() |
|
with gr.Column(scale=1, min_width=50): |
|
submit_btn = gr.Button(value="Send", variant="primary") |
|
with gr.Row(elem_id="buttons") as _: |
|
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True) |
|
clear_btn = gr.Button(value="🗑️ Clear", interactive=True) |
|
|
|
gr.Markdown(tos_markdown) |
|
gr.Markdown(learn_more_markdown) |
|
gr.Markdown(ack_markdown) |
|
|
|
regenerate_btn.click( |
|
regenerate, |
|
[state, image_process_mode], |
|
[state, chatbot, textbox, imagebox], |
|
queue=False, |
|
).then( |
|
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] |
|
) |
|
|
|
clear_btn.click( |
|
clear_history, None, [state, chatbot, textbox, imagebox], queue=False |
|
) |
|
|
|
textbox.submit( |
|
add_text, |
|
[state, textbox, imagebox, image_process_mode], |
|
[state, chatbot, textbox, imagebox], |
|
queue=False, |
|
).then( |
|
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] |
|
) |
|
|
|
submit_btn.click( |
|
add_text, |
|
[state, textbox, imagebox, image_process_mode], |
|
[state, chatbot, textbox, imagebox], |
|
queue=False, |
|
).then( |
|
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] |
|
) |
|
|
|
demo.load(load_demo, None, [state], queue=False) |
|
return demo |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default=None) |
|
parser.add_argument("--port", type=int, default=None) |
|
parser.add_argument("--share", default=None) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--conv-mode", type=str, default="phi") |
|
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH) |
|
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_PATH.split('/')[-1]) |
|
parser.add_argument("--load-8bit", action="store_true") |
|
parser.add_argument("--load-4bit", action="store_true") |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", |
|
) |
|
logger = logging.getLogger(__name__) |
|
logger.info(gr.__version__) |
|
args = parse_args() |
|
model_name = args.model_name |
|
|
|
model, tokenizer, image_processor, context_len = load_pretrained_model( |
|
args.model_path, |
|
load_4bit=args.load_4bit, |
|
load_8bit=args.load_8bit |
|
) |
|
model.to(args.device) |
|
model =model.to(torch.float32) |
|
|
|
image_processor = ImagePreprocess(image_processor, model.config) |
|
text_processor = TextPreprocess(tokenizer, args.conv_mode) |
|
demo = build_demo() |
|
demo.queue() |
|
demo.launch(server_name=args.host, server_port=args.port, share=args.share) |
|
|