File size: 13,090 Bytes
74b17e0 f04a800 74b17e0 f04a800 74b17e0 412e60a 74b17e0 ce9f495 74b17e0 412e60a 74b17e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
'''
@Description:
@Author: jiajunlong
@Date: 2024-06-19 19:30:17
@LastEditTime: 2024-06-19 19:32:47
@LastEditors: jiajunlong
'''
import argparse
import hashlib
import json
from pathlib import Path
import time
from threading import Thread
import logging
import gradio as gr
import torch
from transformers import TextIteratorStreamer
from tinyllava.utils import *
from tinyllava.data import *
from tinyllava.model import *
DEFAULT_MODEL_PATH = "cpu4dream/llava-small-OpenELM-AIMv2-0.6B"
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
title_markdown = """
# Tiny Llava OpenELM-AIMv2 0.6B 🐛
## Multimodal Image Question Answering on CPU
This space demonstrates the capabilities of the [cpu4dream/llava-small-OpenELM-AIMv2-0.6B](https://huggingface.co/cpu4dream/llava-small-OpenELM-AIMv2-0.6B) model, trained using the [TinyLLaVA Framework](https://github.com/TinyLLaVA/TinyLLaVA_Factory).
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
learn_more_markdown = """
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
"""
ack_markdown = """
### Acknowledgement
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community!
"""
def regenerate(state, image_process_mode):
state.messages[-1]['value'] = None
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None)
def clear_history():
state = Message()
return (state, state.to_gradio_chatbot(), "", None)
def add_text(state, text, image, image_process_mode):
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None)
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if "<image>" not in text:
# text = '<Image><image></Image>' + text
text = text + "\n<image>"
if len(state.images) > 0:
state = Message()
state.add_image(image, len(state.messages))
state.add_message(text, None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None)
def load_demo():
state = Message()
return state
@torch.inference_mode()
def get_response(params):
input_ids = params["input_ids"]
prompt = params["prompt"]
images = params.get("images", None)
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
# image = [load_image_from_base64(img) for img in images][0]
image = images[0][0]
image = image_processor(image)
image = image.unsqueeze(0).to(model.device, dtype=torch.float32)
num_image_tokens = getattr(model.vision_tower._vision_tower, "num_patches", 336)
else:
image = None
image_args = {"images": image}
else:
image = None
image_args = {}
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, "max_position_embeddings", 2048)
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
do_sample = True if temperature > 0.001 else False
logger.info(prompt)
input_ids = input_ids.unsqueeze(0).to(model.device)
# keywords = [stop_str]
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15
)
max_new_tokens = min(
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens
)
if max_new_tokens < 1:
yield json.dumps(
{
"text": prompt
+ "Exceeds max token length. Please start a new conversation, thanks.",
"error_code": 0,
}
).encode() + b"\0"
return
generate_kwargs = dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id = tokenizer.eos_token_id,
**image_args,
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
logger.debug(prompt)
logger.debug(generate_kwargs)
generated_text = prompt
for new_text in streamer:
generated_text += new_text
# print(f"new_text:{new_text}")
if generated_text.endswith(stop_str):
generated_text = generated_text[: -len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
def http_bot(state, temperature, top_p, max_new_tokens):
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot())
return
images = state.images
result = text_processor(state.messages, mode='eval')
prompt = result['prompt']
input_ids = result['input_ids']
pload = {
"model": model_name,
"prompt": prompt,
"input_ids": input_ids,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": (
text_processor.template.separator.apply()[1]
), "images": images}
state.messages[-1]['value'] = "▌"
yield (state, state.to_gradio_chatbot())
# for stream
output = get_response(pload)
for chunk in output:
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt) :].strip()
state.messages[-1]['value'] = output + "▌"
yield (state, state.to_gradio_chatbot())
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1]['value'] = output
yield (state, state.to_gradio_chatbot())
return
time.sleep(0.03)
state.messages[-1]['value'] = state.messages[-1]['value'][:-1]
yield (state, state.to_gradio_chatbot())
def build_demo():
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=5):
with gr.Row(elem_id="Model ID"):
gr.Dropdown(
choices=[DEFAULT_MODEL_PATH.split('/')[-1]],
value=DEFAULT_MODEL_PATH.split('/')[-1],
interactive=True,
label="Model ID",
container=False,
)
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image",
visible=False,
)
# cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = Path(__file__).parent
gr.Examples(
examples=[
[
f"{cur_dir}/examples/extreme_ironing.jpg",
"What is unusual about this image?",
],
[
f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
],
inputs=[imagebox, textbox],
)
with gr.Accordion("Parameters", open=False) as _:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=1024,
value=512,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as _:
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
gr.Markdown(ack_markdown)
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox],
queue=False,
).then(
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
)
clear_btn.click(
clear_history, None, [state, chatbot, textbox, imagebox], queue=False
)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox],
queue=False,
).then(
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox],
queue=False,
).then(
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
)
demo.load(load_demo, None, [state], queue=False)
return demo
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=None)
parser.add_argument("--share", default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default="phi")
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH)
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_PATH.split('/')[-1])
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
logger.info(gr.__version__)
args = parse_args()
model_name = args.model_name
# DEFAULT_MODEL_PATH = args.model_path
model, tokenizer, image_processor, context_len = load_pretrained_model(
args.model_path,
load_4bit=args.load_4bit,
load_8bit=args.load_8bit
)
model.to(args.device)
model =model.to(torch.float32)
image_processor = ImagePreprocess(image_processor, model.config)
text_processor = TextPreprocess(tokenizer, args.conv_mode)
demo = build_demo()
demo.queue()
demo.launch(server_name=args.host, server_port=args.port, share=args.share)
|