loubnabnl's picture
loubnabnl HF staff
Update app.py
6b9b86e
raw
history blame
6.93 kB
import json
import os
import pandas as pd
import requests
import threading
import streamlit as st
from datasets import load_dataset, load_metric
MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"]
GENERATION_MODELS = ["CodeParrot", "InCoder", "CodeGen"]
@st.cache()
def load_examples():
with open("utils/examples.json", "r") as f:
examples = json.load(f)
return examples
def load_evaluation():
# load task 2 of HumanEval and code_eval_metric
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
human_eval = load_dataset("openai_humaneval")
entry_point = f"check({human_eval['test'][2]['entry_point']})"
test_func = "\n" + human_eval["test"][2]["test"] + "\n" + entry_point
code_eval = load_metric("code_eval")
return code_eval, test_func
def read_markdown(path):
with open(path, "r") as f:
output = f.read()
st.markdown(output, unsafe_allow_html=True)
def generate_code(
generations, model_name, gen_prompt, max_new_tokens, temperature, seed
):
# call space using its API endpoint
url = (
f"https://hf.space/embed/codeparrot/{model_name.lower()}-subspace/+/api/predict/"
)
r = requests.post(
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
)
generated_text = r.json()["data"][0]
generations.append({model_name: generated_text})
def generate_code_threads(
generations, models, gen_prompt, max_new_tokens, temperature, seed
):
threads = []
for model_name in models:
# create the thread
threads.append(
threading.Thread(
target=generate_code,
args=(
generations,
model_name,
gen_prompt,
max_new_tokens,
temperature,
seed,
),
)
)
threads[-1].start()
for t in threads:
t.join()
@st.cache(show_spinner=False)
def generate_teaser(gen_prompt):
generations = []
generate_code(generations, "CodeParrot", gen_prompt, 9, 0.2, 42)
return generations[0]["CodeParrot"]
st.set_page_config(page_icon=":laptop:", layout="wide")
with open("utils/table_contents.md", "r") as f:
contents = f.read()
st.sidebar.markdown(contents)
# Introduction
st.title("Code generation with πŸ€—")
read_markdown("utils/summary.md")
## teaser
example_text = "def print_hello_world():"
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
gen_prompt = st.text_area(
"",
value=example_text,
height=100,
).strip()
if st.button("Generate code!", key=1):
with st.spinner("Generating code..."):
st.code(generate_teaser(gen_prompt))
read_markdown("utils/intro.md")
# Code datasets
st.subheader("1 - Code datasets")
read_markdown("datasets/intro.md")
read_markdown("datasets/github_code.md")
col1, col2 = st.columns([1, 2])
with col1:
selected_model = st.selectbox("", MODELS, key=1)
read_markdown(f"datasets/{selected_model.lower()}.md")
# Model architecture
st.subheader("2 - Model architecture")
read_markdown("architectures/intro.md")
col1, col2 = st.columns([1, 2])
with col1:
selected_model = st.selectbox("", MODELS, key=2)
read_markdown(f"architectures/{selected_model.lower()}.md")
# Model evaluation
st.subheader("3 - Code model evaluation")
read_markdown("evaluation/intro.md")
read_markdown("evaluation/demo_humaneval.md")
## quiz
st.markdown("Below you can try solving this problem or visualize the solution of CodeParrot:")
with open("evaluation/problem.md", "r") as f:
problem = f.read()
with open("evaluation/solution.md", "r") as f:
solution = f.read()
candidate_solution = st.text_area(
"Complete the problem:",
value=problem,
height=240,
).strip()
if st.button("Test my solution", key=2):
with st.spinner("Testing..."):
code_eval, test_func = load_evaluation()
test_cases = [test_func]
candidates = [[candidate_solution]]
pass_at_k, _ = code_eval.compute(references=test_cases, predictions=candidates)
text = "Your solution didn't pass the test, pass@1 is 0 πŸ˜•" if pass_at_k['pass@1'] < 1 else "Congrats your pass@1 is 1! πŸŽ‰"
st.markdown(text)
if st.button("Show model solution", key=3):
st.markdown(solution)
# Code generation
st.subheader("4 - Code generation ✨")
read_markdown("generation/intro.md")
col1, col2, col3 = st.columns([7, 1, 6])
with col1:
st.markdown("**Models**")
selected_models = st.multiselect(
"Select code generation models to compare:",
GENERATION_MODELS,
default=GENERATION_MODELS,
key=3,
)
st.markdown(" ")
st.markdown("**Examples**")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.selectbox(
"Select one of the following examples or implement yours:", example_names
)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
with col3:
st.markdown("**Generation settings**")
temperature = st.slider(
"Temperature:", value=0.2, min_value=0.1, step=0.1, max_value=2.0
)
max_new_tokens = st.slider(
"Number of tokens to generate:",
value=default_length,
min_value=8,
step=4,
max_value=256,
)
seed = st.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000)
gen_prompt = st.text_area(
"Generate code with prompt:",
value=example_text,
height=200,
).strip()
if st.button("Generate code!", key=4):
with st.spinner("Generating code..."):
# use threading
generations = []
generate_code_threads(
generations,
selected_models,
gen_prompt=gen_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
seed=seed,
)
for i in range(len(generations)):
st.markdown(f"**{selected_models[i]}**")
for j in range(len(generations)):
if selected_models[i] in generations[j].keys():
st.code(generations[j][selected_models[i]])
if len(generations) < len(selected_models):
st.markdown("<span style='color:red'>Warning: Some models run into timeout, try another time or reduce the Number of tokens to generate. You can also try generating code using the original subspaces: [InCoder](https://huggingface.co/spaces/loubnabnl/incoder-subspace), [CodeGen](https://huggingface.co/spaces/loubnabnl/codegen-subspace), [CodeParrot](https://huggingface.co/spaces/loubnabnl/codeparrot-subspace)</span>", unsafe_allow_html=True)
# Resources
st.subheader("Resources")
read_markdown("utils/resources.md")